Notes for the FEM class on 5/10/2021

The Ax=B form obtained in the last class (on 30/9/2021) involved computation of integrals over
the domain (for computing the K matrix and for computing the body force vector term in the RHS).
Sometimes, it is non-trivial to compute the integration. When E and A are functions of space
variables (x), when higher-order polynomial shape functions are used to approximate the solution
for better accuracy (e.g. with 3-node or 5-node elements we need higher-order polynomial
functions.), we need to numerically compute the integral function. Also, the domain always
consists of more than one element. In this scenario, the elemental stiffness matrices from many
constituent elements are to be combined to form a global stiffness matrix.

Prof. Amar explained in this class the technique, Gauss-Quadrature, used commonly in FEM to
numerically integrate functions appearing as terms in the Ax=B form. Prof. Amar also explained
how the Gauss-Quadrature technique is used to map the physical domain of the 1D rod element to
the natural domain required by the Gauss-Quadrature before performing numerical integration.
Finally, Prof. Amar concluded the discussion with constructing a global stiffness matrix for the
rod consisting of two elements.

Gauss-Quadrature has different rules such as 1-point, 2-point, ..., N-point etc. Depending on the
polynomial appearing as the integral function, you use different rules. Fact: using N-point
quadrature rule, you can integrate (2N-1)-degree polynomial correctly.

The basic requirement for the Gauss-Quadrature rules to be applied is that the integral limits range
from -1 to 1. However, the limits in the integral terms appearing in the elemental equations in
Ax=B form range from x, to x; (x,and x,are coordinates in the physical domain of the rod
element. The range -1 to 1 is referred to as the natural domain.). Hence, the integral functions need
to be mapped from physical domain to the natural domain. E.g.
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f_ll F(&)dé& is numerically computed as summation:

f_ll F(&)dé =YV, w;F (&), where w; is the quadrature weight of the i quadrature point
and ¢;is the corresponding location. E.qg.
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Earlier, the displacement at x, a point between the nodes, was written in terms of the nodal
displacements using linear functions N; and N, as follows:

t(x) = Ni(Xu; + No(X)u,



where u; and u, are nodal displacements at nodes 1 and 2 resp.

Now, we would need the equivalent of:
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Therefore, x = x, Tf + x TE . S0, we can write x as:

x = xgN1 (&) + x, N, () , where N; = 1;—5 and N, = %f can be seen as linear functions of ¢.

In isoparametric FEM, we use the same functions N; and N, to approximate the solution (<)
as:
() = N1 (Hug + N2(Duy

Now, we need to express the N; and N; (which are linear functions of X) in K;; = f;b EA %% dx
using N, (&) and N, (). So,

— needs to be converted in terms of and 4 (chaln rule).

We know that: x = x,N; (&) + x, N, (). OR x = x{N; + x,N, (x; = xzand x, = x;, are node 1
and node 2 coordinates resp.) OR x = Y.2_; x; Ny,
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Z—’; = J, where ] is called the Jacobian matrix (because the domain is 1D, we have a scalar value

(only one component) for the Jacobian matrix).
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The integral function EAZL L[]]~* above can be represented as F(¢)

s‘df

Using 1-point quadrature (w; = 2,&; = 0) and substituting for F(0):
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Thus, the elemental stiffness matrix is (when E and A are constants):
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Now consider the rod with two elements. There are 3 nodes as shown below for the two elements:

o
1 element 1 2 element 2 3

For the 3 nodes, there are three degrees of freedom (i.e. 3 displacement values, each corresponding
to a node). Since, there are 3 displacement values i.e. us , there would be 3 components to the x
vector in the Ax=B form (Recall: x vector denotes the displacements). So, the global stiffness
matrix combining the elemental matrices of elements 1 and 2 would be 3x3:
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, Where % comes from elemental matrix for element 1 and % comes from elemental matrix for
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element 2. Note that the particular order of numbering nodes is important and dictates the values
of the entries in the global stiffness matrix. Based on the numbering followed the resultant stiffness



matrix can be sparse (lot of zeros) or non-sparse. For a 1D problem with many elements and
following the node numbering order as shown above, we get a tridiagonal matrix.

Note: If you understand FEM by this time, then it is because of the excellent guest lectures by Prof.
Amar Gaonkar.



