
Notes for the FEM class on 30/9/2021 
 

Prof. Amar started with an explanation of why it helps to consider 3D objects such as a rod as a 

1D object for the purpose of modeling to understand certain processes/phenomenon. He started 

with the specific PDE formula used (Eq.1 on slide 7), as a mathematical model, to understand 

the displacement of particles at various points in a rod when the rod is subjected to certain kinds 

of forces.  

 

𝐸𝐴
𝑑2𝑢

𝑑𝑥2
+ 𝐹 = 0 

, where E is often a constant, A is area of the cross section (unit area) 

 

This formula, he explained, is in “Strong-form”, has a second-order derivative term, and hence, 

requires a quadratic polynomial function to accurately represent it whenever such representation 

exists. He then explained that a series of functions (linear in this case), called shape functions or 

weight functions, are used to approximate the solution, �̃�, mentioned in the PDE formula.  Being 

approximate in nature, �̃� has an associated error or Residual R. Therefore, we would have:  

𝐸𝐴
𝑑2�̃�

𝑑𝑥2
+ 𝐹 = 𝑅 

 
He then derived what is called as the “Weak-form” formulation for this approximate function for 

the 1D problem using FEM employing Galerkin approach / weighted residuals. In general, the 

Galerkin approach would integrate the weighted residual and equate it to zero i.e. 

 

     ∫𝜔 𝑅 = 0 
 

, where 𝜔 are the weight functions or shape functions and R is the residual.  For the 1D problem, 

this general formula can be written as (substituting for R):  

 

     ∫𝜔 (𝐸𝐴
𝑑2 𝑢 

𝑑𝑥2
+ 𝐹) = 0  

=∫ 𝜔 𝐸𝐴
𝑑2 𝑢 

𝑑𝑥2
 𝑑Ω 

Ω
+ ∫ 𝜔 𝐹 𝑑Ω

Ω
= 0, where ∫

Ω
 denotes integral over the domain Ω 

 

𝜔 
𝑑2 𝑢 

𝑑𝑥2
 in the first term above, ∫ 𝜔 𝐸𝐴

𝑑2 𝑢 

𝑑𝑥2
 𝑑Ω 

Ω
, can be substituted using the information:  

    
𝑑

𝑑𝑥
[𝜔

𝑑𝑢

𝑑𝑥
 ] =

𝑑𝜔

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝜔 

𝑑2 𝑢 

𝑑𝑥2
 

Substituting: 

∫
𝑑

𝑑𝑥
(𝜔𝐸𝐴

𝑑�̃�

𝑑𝑥
) 𝑑Ω 

Ω

− ∫ 𝐸𝐴
𝑑𝜔

𝑑𝑥

𝑑�̃�

𝑑𝑥
 𝑑Ω 

Ω

+ ∫𝜔 𝐹 𝑑Ω = 0 

=  [𝜔𝐸𝐴
𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝜔 𝐹 𝑑Ω

Ω
= ∫ 𝐸𝐴

𝑑𝜔

𝑑𝑥

𝑑𝑢

𝑑𝑥
 𝑑Ω 

Ω
 

 



In the above general formula that Prof. Amar derived, he explained what each term intuitively 

meant: Stiffness matrix, body force vector, boundary condition coefficients. 

 

[𝜔𝐸𝐴
𝑑�̃�

𝑑𝑥
]
0

𝐿

+ ∫ 𝜔 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝜔

𝑑𝑥

𝑑�̃�

𝑑𝑥
 𝑑Ω 

Ω

 

  
 

 

 

The above is the “Weak-form” formula. This formula is preferred over “Strong-form” because of 

lower order term (i.e. only the first-order derivative terms are present and second-order derivative 

term of the “Strong-form” formula is absent.) making it relatively easier to numerically compute. 

 

Then, he took the example of 1D rod fixed at one end and subjected to body and axial forces. 

Examples of body forces are gravitational, electromagnetic etc. He considered the rod as a single 

element with the two endpoints serving as nodes. He explained how when given two points, one 

can fit/approximate a linear function connecting the points. He then went on to explain the origin 

of the weight functions associated with the two nodes of the rod element.   

 

For a two-node element, where the elements have basis functions (or weight/shape functions) 𝑁1 

and 𝑁2, the method of weighted residuals says that the displacement, u, at any point in between 

the nodes (note: nodes are located at end points of the element.) can be approximated using linear 

combination of the basis functions i.e: 

  

 

 

�̃�  =  𝑁1𝑢1 + 𝑁2𝑢2    

 

or written in terms of longitudinal displacement: 

 

�̃�(𝑥)  =  𝑁1(𝑥)𝑢1 + 𝑁2(𝑥)𝑢2 

 

where 𝑢1 and  𝑢2 are displacements at the Nodes 1 and 2 resp. These are called nodal / elemental 

displacements.  𝑁1 and 𝑁2 (functions of x) can be derived to get: 

 

𝑁1 = 1 − 𝑥/𝐿 

𝑁2 = 𝑥/𝐿 

 

Further, he also mentioned what Galerkin suggested: choose the weight functions appearing in the 

“weak-form” equation as the same as the ones derived for the nodes i.e. replace 𝜔 in the “weak-

form” equation with 𝑁1 and 𝑁2:  

 

Boundary condition 

coefficient vector 
Body force vector Stiffness matrix 

Node 1 Node 2 

Element 



So, the weak-form formula was rewritten for each element substituting for the weight functions to 

yield Stiffness matrix, Force vector (body force + boundary condition coefficients), and 

displacements. 

 

Substituting for 𝜔 with 𝑁1 and 𝑁2. in the “weak-form” equation, we get the following two equations: 

[𝑁1𝐸𝐴
𝑑�̃�

𝑑𝑥
]
0

𝐿

+ ∫ 𝑁1 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝑁1

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω

 

 

[𝑁2𝐸𝐴
𝑑�̃�

𝑑𝑥
]
0

𝐿

+ ∫ 𝑁2 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝑁2

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω

 

 
Considering the first equation, rewriting, and expanding: 

[𝑁1𝐸𝐴
𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁1 𝐹 𝑑Ω

Ω
= ∫ 𝐸𝐴

𝑑𝑁1

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω
   (LHS=RHS) 

 ∫ 𝐸𝐴
𝑑𝑁1

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω
= [𝑁1𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁1 𝐹 𝑑Ω

Ω
   (RHS=LHS) 

 ∫ EA 
𝑑𝑁1

𝑑𝑥

𝑑𝑁1

𝑑𝑥
u1 𝑑Ω 

Ω
+ ∫ EA 

𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
u2 𝑑Ω 

Ω
= [𝑁1𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁1 𝐹 𝑑Ω

Ω
 

Similarly considering the second equation, rewriting, and expanding: 

∫ EA 
𝑑𝑁2

𝑑𝑥

𝑑𝑁1

𝑑𝑥
u1 𝑑Ω 

Ω
+ ∫ EA 

𝑑𝑁2

𝑑𝑥

𝑑𝑁2

𝑑𝑥
u2 𝑑Ω 

Ω
= [𝑁2𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁2 𝐹 𝑑Ω

Ω
 

Using shorter notation on the LHS for the two equations expanded: 

𝐾11𝑢1 + 𝐾12𝑢2 = [𝑁1𝐸𝐴
𝑑�̃�
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁1 𝐹 𝑑𝑥
𝐿

0
 

𝐾21𝑢1 + 𝐾22𝑢2 = [𝑁2𝐸𝐴
𝑑�̃�
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁2 𝐹 𝑑𝑥
𝐿

0
 

Where, 𝐾𝑖𝑗 = ∫ 𝐸𝐴
𝑑𝑁𝑖

𝑑𝑥

𝑑𝑁𝑗

𝑑𝑥
𝑑𝑥

𝐿

0
 and Ω ranges from 0 to 𝐿 (dΩ becomes dx because of the 

domain is 1D). 

The Equations 1 and 2 can be expressed in Ax=B form (A is matrix, x is vector, and B is a vector) 

as: 

 

(1) 

(2) 



[
𝐾11 𝐾12

𝐾21 𝐾22
] [

𝑢1

𝑢2
] =

[
 
 
 
 
 [𝑁1𝐸𝐴

𝑑�̃�
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁1 𝐹 𝑑𝑥
𝐿

0

[𝑁2𝐸𝐴
𝑑�̃�
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁2 𝐹 𝑑𝑥
𝐿

0 ]
 
 
 
 
 

 

 

  

 

 

Stiffness matrix 

Force vector  displacements  


