
CS601: Software Development for Scientific Computing
Bonus Assignment - Erf Function

Due: 6/10/2021

The objective of this assignment is to improve the accuracy of the erf function.

1 Problem
Implement a C++ program that generates the value of error function1, erf accurately. The error function
is defined by the equation: erf(x) = 2√

π

∫ x
0
e−t

2

dt

1.1 What you need to submit
Create a branch called ERF in your PA1 repository. Your branch should contain only those files that
implement the erf function. Place all of the necessary code that you wrote for implementing erf function
in this branch. Create a shell script (this must be written in bash) called runme at the top level (outside
your inc, src folders if any). The runme script compiles and runs your C++ program. This script should
take in two arguments: first, the parameter x that needs to be passed to your myerf function. Second,
accuracy, another parameter passed to your myerf function. E.g. given x=-3.000000 and accuracy=1e−6,
your program should output blankspace separated real numbers (3 of them, showing results up to 6 decimal
digits) (Do not print anything else. Not even the column header shown below):

Your implementation must use the least number of terms for achieving the desired/given accuracy. Compare
with the built-in function erf for validating your results (i.e. checking if you are ‘building the right thing”
/ checking correctness).

You must tag your source code and submit as done for previous assignments. The tag name to be used is:
cs601erfsubmission. All tag names are case-sensitive..

x myerf erf
-3.000000

2 Hints

1see erf for information the error function

1

http://mathworld.wolfram.com/Erf.html

Hints to PA1

One of the applications of the 𝐸𝑟𝑓 function is to use it while computing the probability that a

standard normal variate 𝑋 assumes a value in the interval [0,x] given the standard normal

distribution curve.

𝐸𝑟𝑓(𝑥) =
2

√𝜋
∑

(−1)𝑛𝑥2𝑛+1

𝑛! (2𝑛 + 1)

∞

𝑛=0

=
2

√π
(x −

1

3
x3 +

1

10
x5 −

1

42
x7 +

1

216
x9+ . ..

The above is called McLaurin series.

• Note the sum is to infinity. So we need to decide on the number of terms to include in the
numerical computation to meet the desired accuracy.

• For |𝑥| < 1 the series is well behaved in that as n goes to infinity, 𝑥2𝑛+1 will go to zero
(i.e., the terms get smaller and smaller). However, for |𝑥| > 1, 𝑥2𝑛+1 will go to infinity as
n goes to infinity.

• For increasing values of n, when |𝑥| > 1, the value of the term is reduced by the n! in the
denominator. 𝑛! grows rapidly and hence, the magnitude of 𝑛! could cause problems:
may lead to overflow. E.g., for x=-3.0, n should be 32 to obtain 106 accuracy in the
calculation. 32! is 2.6x1035, which is 25 orders of magnitude larger than the maximum
integer value possible to store in 4 bytes. Hence, although factorial is an integer, it will
need to be saved in a double in this calculation.

• If large arguments (x) are to be used, an alternative to the Maclaurin series should be

considered. The Wolfram site gives some alternative expressions for large arguments.

	Problem
	What you need to submit

	Hints

