

 CS601: Software Development for Scientific Computing
Maximum Points: 25 Mid-semester examination 24/09/2021, 10:00AM to 12:00PM

Instructions:

This exam has two parts. Part I is open book, open notes (printed/written). No electronic devices allowed.

Part II is take home. The instructions for part II are given separately in the README file provided along

with the GitHub repository. State your assumptions (if any) clearly.

Part I:

1. Suppose the size of float is 1 byte in your machine and the format is as shown below (S=Sign,

E=Exponent, M=Mantissa). Compare the largest non-integer number with the largest signed integer

number possible with 1 byte of storage? You must explain your answer. (2 points)

2. You visit a supermarket and find that frequently accessed grocery items are stacked at the front
aisles. Name the Computer Science concept that resonates with this. You must explain your answer.

 (1 point)
3. Tools

i) The following Makefile will print three commands when you run make (assuming the programs
have no syntax error or warning). Write the commands in the exact order in which they are printed.
 (3 points)

ii) Suppose you change $^ at line 8 to $<. What would you expect? (0.5 points)

iii) Suppose you want to use the target generated, Solution, with a debugger. What is the make

command that you would issue to generate debug symbols? (0.5 points)

iv) Consider the program below and the gdb session for the same shown adjacently. Fill in the blanks

for A, B, C, and D shown in the gdb session. (2 points)

4. C++ Programming (1 point)

5. Structured and Unstructured grids
i) The picture below shows a snapshot of the stencil computation for the 1D heat diffusion problem
with Dirichlet boundary conditions. The dot at (j=1, n=1) indicates part of the computation to be done
at time step 1 (i.e. at time 𝛿𝑡 from the beginning) using the data values from the initial conditions
(shown using dots with arrows pointing to (j=1, n=1)).

What is printed?
a) D::print() D::print(int)
b) B::print() D::print(int)
c) D::print() B::print(int)
d) B::print() B::print(int)
e) Compiler error because it is

ambiguous which B and/or D is to be

called

Using the notation discussed in class, write the equations representing the entire computation done at
time step 3 (i.e. at time 3𝛿𝑡 from the beginning). Assume that 𝑙/𝛿𝑥 = 4. (2 points)

ii) The system of equations obtained while computing the 6-point stencil (Crank-Nicholson scheme) for
the problem mentioned previously can be expressed in 𝐴𝑥 = 𝐵 form. Using the notation discussed in
class, a) Write the set of equations that you obtain while computing at time step 2 (i.e. time= 2𝛿𝑡 from
the beginning). (2 points) b) Express the set of equations in 𝐴𝑥 = 𝐵 form. (1 point) c) Write the 𝐴 matrix
obtained while computing at time step 4. Assume that 𝑟 = αδt/(δx)2 = 1.2 (1 point) (4 points)

iii) Write briefly comparing the computation involved in 3-point stencil and 6-point stencil w.r.t.
parallelism. E.g. parallelizing the computation at time step 1 would mean simultaneous computation of
the dots at (j=1, n=1), (j=2, n=1), and (j=3, n=1). (1 point)

iv) Exploiting locality and parallelizing Delaunay triangulation is a challenge when compared to that in the
3-point stencil computation. Why or Why not? Justify your answers separately for locality and
parallelism. (2 points)

Part II: (6 points)
Modify your PA2 implementation to compute the 2D Heat Equation in steady state. Your modification
must incorporate the principles of Object-Orientation and have minimal changes w.r.t your PA2 code.

o You must create a branch in your GitHub repo called PA3
o You must tag your submission as cs601pa3submission
o You must submit (on GitHub) the tagged version of your code before Noon, 25/9/21.

