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Functions Typical Syntax and Usage

FUNCTION VOID bar(INT x, FLOAT y) BEGIN

END

2

comma separated parameter 
declarations. 

Keywords
Return type

Declarations (string or variable decl) followed by 
statement declarations

FUNCTION void foo() BEGIN
INT a;
FLOAT b;
…
bar(a, b);

END

Calls function bar
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Different Kinds of Parameters

• Value

• Reference

• Result

• Value-Reference

• Read-only

• Call-by-Name
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Advantage: ‘side-effect’ free – caller can be sure that the argument is not 

modified by the callee

Disadvantage: Not efficient for larger sized arguments.
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Advantage: Efficiency – for larger sized arguments

Disadvantage: results in clumsy code at times (e.g. check for null pointers)
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Result Parameters

• To capture the return value of a function

• Copied at the end of function into arguments of the 
caller

• E.g. output ports in Verilog module definitions
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Result Parameters

int x = 1

void main () {

foo(x, x);

print(x);

}

void foo(int y, result int z) {

y = 2;

z = 3;

print(x);

}

10

•What do the print 

statements print?

•Answer:

print(x); //prints 3
print(x) //prints 1
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Value-Result Parameters

• “Copy-in copy-out”

• Evaluate argument expression, copy to parameters

• After subroutine is done, copy values of parameters back 
into arguments

• Results are often similar to pass-by-reference, but there are 
some subtle situations where they are different 
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Value-Result Parameters

int x = 1

void main () {

foo(x, x);

print(x);

}

void foo(int y, value result int z)

{

y = 2;

z = 3;

print(x);

}

12

•What do the print 

statements print?

•Answer:

print(x); //prints 3
print(x) //prints 1
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Read-only Parameters

• Used when callee will not change value of parameters

• Read-only restriction must be enforced by compiler

• E.g. const parameter in C/C++

• Enforcing becomes tricky when in the presence of aliasing 
and control flow. E.g.

13

void foo(readonly int x, int y) {
int * p;
if (...) p = &x else p = &y
*p = 4
}
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Call-by-name Parameters

• The arguments are passed to the function before evaluation 
• Usually, we evaluate the arguments before passing them

• Not used in many languages, but Haskell uses a variant

14

int x = 1
void main () {

foo(x+2);
print(x);

}

void foo(int y) {
z = y + 3; //expands to z = x + 2 + 3
print(z);

}
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Call-by-name Parameters

• Why is this useful?
• E.g. to analyze certain properties of a program/function –

termination

• Even if bar has an infinite loop,  the program terminates.

15

void main () {
foo(bar());

}

void foo(int y) {
z = 3;
if(z > 3)

z = y + z;
}
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• Compiler assumes a runtime environment for execution of 
the program.

• A C/C++ program in Linux OS has 4 segments of memory
• Every memory location is a box holding data/instruction

Program Layout in Memory
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Program Layout in Memory

• A program’s memory space is divided into four 
segments:

1. Text 
• source code of the program

2. Data 
• Broken into uninitialized and initialized segments; contains space for 

global and static variables. E.g. int x = 7; int y;

3. Heap
• Memory allocated using malloc/calloc/realloc/new

4. Stack
• Function arguments, return values, local variables, special registers.
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Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

$rbp

$rsp

18

(initialized to zero)
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• A function call or invocation is termed an activation

• Calls to functions in a program form activation tree

• Postorder traversal of the tree shows return sequence i.e. 
the order in which control returns from functions

• Preorder traversal of the tree shows calling sequence

• In a sequential program, at any point in time, control 
of execution is in any one activation

• All the ancestors of that activation are active i.e. have not 
returned

Activation
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• Activations are managed through the help of 
control stack

• A function call (activation) results in allocating a 
chunk of memory called activation record or frame
on the stack (also called stack frame)

Activation

CS406, IIT Dharwad 20



Activation Record

• A sub-segment of memory on the stack 
• Special registers $rbp and $rsp track the bottom and top of 

the stack frame. These are the names in x86 architecture.

• $rbp – base pointer or frame pointer (fp)

• $rsp – stack pointer (sp)
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Activation Record - Example 

22

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp
main() Activation record 

/ frame
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Activation Record - Example 
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main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()
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Activation Record - Example 
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main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

bar()
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Activation Record - Example 
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main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()
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Activation Record - Example 
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main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

main()

foo()

sp
baz()
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Activation Record – Example (Recursive 
Functions) 
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main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp

fact(2)

fact(1)

fact(0)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for fact n=0
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Activation Record – Example (Recursive 
Functions) 

28

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp

fact(2)

fact(1)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for n=0 popped off. 1 Returned.
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Activation Record – Example (Recursive 
Functions) 

29

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp
fact(2)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for n=1 popped off. 1 Returned.
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Activation Record – Example (Recursive 
Functions)
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main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)
sp

Stack frame for fact n=3

Stack frame for n=2 popped off. 2 Returned.
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Activation Record – Example (Recursive 
Functions) 
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main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()
sp

Stack frame for n=3 popped off. 6 Returned.
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Activation Record

• What happens when a function is called?

1. fp and sp get adjusted

2. Memory for the activation record is allocated on stack

• The size of the memory allocated depends on local variables used by 
the called function (consult function’s symbol table for this)

3. Each invocation of a function has its own instantiation of 
local variables

• When the function call returns:

• Memory for the activation record is destroyed when the 
function returns
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Activation Record

• What is stored in the activation record? 

Depends on the language being implemented:
• Temporaries

• Local vars

• Saved registers

• Return address, previous fp

• Return value

• Actual Params

• Who stores this information?
• Caller 

• Callee
33

together execute calling sequence and return 
sequence
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Application Binary Interface (ABI)

• How is data organized on the activation record?

• ABI is the specification on how data is provided to functions

• Caller saves or callee saves

• ABI is meant to deliver interoperability between different 
compilers

• Compile the function using one compiler to create an object code, 
Link object code with other code compiled using a different compiler

34

form the calling convention
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Typical Activation Record

35

Stack

..

fp arg 1

arg 2

arg n
(Higher address)

(Lower address)

local var 1

local var 2
..

local var m

return address

saved registers

sp

Previous frame

current frame

Callee accesses arguments using +ve offset 
from FP:
argument1 = memory[FP]
argument2 = memory[FP+1] ..

Callee accesses local variables using –ve
offset from FP:
local var 1=memory[FP-1]
local var 2=memory[FP-2]
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Function call: Peeking at Activation 
Record 

• When main calls function foo
1. The following are pushed on to the stack:

1. foo’s arguments
2. Space to hold foo’s return value
3. Address of the next instruction executed (in main) when foo 

returns (return address)
4. Current value of $rbp (frame pointer)

$rsp is automatically updated (decremented) to point to current top of 
the stack.

2. $rbp is assigned the value of $rsp

36

main() {
…
foo();
…

}
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Function call: Peeking at Activation 
Record 

37

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

zReturn value
1234ABCD

main’s fp
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Function call: Peeking at Activation 
Record 

38

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

1234ABCD

main’s fp
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Function call: Peeking at Activation 
Record 

39

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;
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Function call: Peeking at Activation 
Record 

40

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

main’s 
frame
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Function call: Peeking at Activation 
Record 

41

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

main’s 
frame

1234ABCDSaved frame ptr
foo’s fp
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Function call: Peeking at Activation 
Record 

42

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z

1234ABCD

x
2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

Saved frame ptr
foo’s fp

l1
l2

local var1

local var2

main’s 
frame

foo’s 
frame
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Function calls – Register Handling

• Did not use registers in the previous example (for parameter 
passing)

• Registers are faster than memory. So, compiler should keep 
parameters in registers whenever possible

• Modern calling convention places first few arguments in registers 
(arg1 in r1, arg2 in r2, arg3 in r3…) and the remaining in memory.

• In x86 C-ABI, first 6 arguments are passed in registers 

• What if callee wants to use registers r1, r2, r3 etc. for local 
computation? Callee must save the registers in its stack frame.
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Function calls – Register Handling

• Two options: caller saves or callee saves

• Caller Saves
• Caller pushes all the registers it is using on to the stack before 

calling the function 

• Restores the registers after the function returns

• Callee Saves
• Callee pushes all the registers it is going to use on the stack 

immediately after being called

• Restores the registers just before it returns
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Activation Record – Return Address and 
Return Value

• Callee must be able to return to the caller when done

• Return address is the address of the instruction following the 
function call

• Return address can be placed on the stack or on register

• The call instruction on modern machines places the return 
address in a specific register

• Return value is placed in a specific register by the callee function
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• SP is manipulated through push and pop 
instructions

48

Push x:
stack_pointer--
Memory[stack_pointer] = x

Pop x:
x = Memory[stack_pointer]
stack_pointer--
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Question ?

Where are the command-line arguments stored?

How about environment variables such as 
LD_LIBRARY_PATH and PATH?

50

Challenge Q: are there scenarios where 
the activation record is required to be 
allocated on the heap?

fun f(x) =
let

fun g(y) = x + y
in

g
end

val z = f(4)
val w = z(5)CS406, IIT Dharwad



Local Optimizations
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There is a better instruction available!
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ADD C, A, E LD C R4

LD A R5

ADD R4 R5 R6

ST R6 E

This LD is redundant

This LD is redundant
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Get the data present at address in R2 and put it in R1

CS406, IIT Dharwad



61CS406, IIT Dharwad



62CS406, IIT Dharwad



63CS406, IIT Dharwad



64CS406, IIT Dharwad



65

Maximal sequence of instructions that are 
executed one after another (i.e. there are 
no jump instructions OR no instruction is 
the target of a jump) 

Local optimizations are done on basic blocks. Global optimizations on control flow graphs 
(CFGs), where the basic blocks are the nodes of the graph. Then, there are inter-procedural 
optimizations, which span function calls. Later on CFGs and other kinds of optimizations.
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Example

68

Generated Code 

(assembly)

3 Address Code Available expression(s)

Killed 

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”, 
“T1 + C”, “T3 + T2”}

add r1 r2 r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

ld a r1; 
ld b r2;
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Downsides (CSE)

69

T1 and T3 compute the same expression. This can be handled by an 

optimization called value numbering. 

ST R5 D
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Aliasing

70

• One of the biggest problems in compiler analysis is to 

recognize aliases – different names for the same location   

in memory

•Why do aliases occur?

•Pointers referring to the same location

•Function calls passing the same reference in two arguments

•Arrays referencing the same element 

•Unions

•What problems does aliasing pose for CSE?
•when talking about “live” and “killed” values in optimizations like 

CSE, we’re talking about particular variable names

•In the presence of aliasing, we may not know which variables get 

killed when a location is written to

exercise: are T1 and T3 aliased in previous example?
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Single assignment form: a variable is assigned only 
once i.e. appears only once in LHS.
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Single assignment form and its use in 
local optimizations

x=z+y
a=x
x=2*x

b=z+y
a=b
x=2*b

replace x with b

x=z+y
...
x=z+y

Neither z nor y can appear on 
the LHS here in single 
assignment form.  

So, can be sure that this z+y is the same expression as 
earlier. In the original code, if z or y were assigned to in 
between the two expressions, then we would have used 
different names, say, z1=..; y1=; then the last expression 
would have to be rewritten as x=z1+y1.

Aids dead code elimination: if the variable is never used later, can safely 
remove the statement where the variable is defined/assigned to.

Aids copy propagation: can replace all the uses of a variable downstream

Aids CSE: 



Example – Local Optimizations

73

a=x**2
b=3
c=x
d=c*c
e=b*2
f=a+d
g=e*f
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Example – Local Optimizations

• Algebraic simplification – exploiting mathematical 
properties of operators involved

74

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f
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Example – Local Optimizations

• Copy propagation

75

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=3<<1
f=a+d
g=e*f
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Example – Local Optimizations

• Constant folding

76

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=3<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=6
f=a+d
g=e*f
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Example – Local Optimizations

• CSE

77

a=x*x
b=3
c=x
d=x*x
e=6
f=a+d
g=e*f

a=x*x
b=3
c=x
d=a
e=6
f=a+d
g=e*f
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Example – Local Optimizations

• Copy and Constant Propagation

78

a=x*x
b=3
c=x
d=a
e=6
f=a+d
g=e*f

a=x*x
b=3
c=x
d=a
e=6
f=a+a
g=6*f
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Example – Local Optimizations

• Dead code elimination

79

a=x*x
b=3
c=x
d=a
e=6
f=a+a
g=6*f

a=x*x
f=a+a
g=6*f

Anything else?

a=x*x
f=2*a
g=6*f

a=x*x
f=2*a
g=12*a
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