
CS406: Compilers
Spring 2022

Week 9: IR Code for Functions, Local Optimizations

CS406, IIT Dharwad 1

Slides Acknowledgements: Milind Kulkarni

Functions Typical Syntax and Usage

FUNCTION VOID bar(INT x, FLOAT y) BEGIN

END

2

comma separated parameter
declarations.

Keywords
Return type

Declarations (string or variable decl) followed by
statement declarations

FUNCTION void foo() BEGIN
INT a;
FLOAT b;
…
bar(a, b);

END

Calls function bar

CS406, IIT Dharwad

3CS406, IIT Dharwad

Different Kinds of Parameters

• Value

• Reference

• Result

• Value-Reference

• Read-only

• Call-by-Name

4CS406, IIT Dharwad

5

Advantage: ‘side-effect’ free – caller can be sure that the argument is not

modified by the callee

Disadvantage: Not efficient for larger sized arguments.

CS406, IIT Dharwad

6CS406, IIT Dharwad

7

Advantage: Efficiency – for larger sized arguments

Disadvantage: results in clumsy code at times (e.g. check for null pointers)
CS406, IIT Dharwad

8CS406, IIT Dharwad

Result Parameters

• To capture the return value of a function

• Copied at the end of function into arguments of the
caller

• E.g. output ports in Verilog module definitions

9CS406, IIT Dharwad

Result Parameters

int x = 1

void main () {

foo(x, x);

print(x);

}

void foo(int y, result int z) {

y = 2;

z = 3;

print(x);

}

10

•What do the print

statements print?

•Answer:

print(x); //prints 3
print(x) //prints 1

CS406, IIT Dharwad

Value-Result Parameters

• “Copy-in copy-out”

• Evaluate argument expression, copy to parameters

• After subroutine is done, copy values of parameters back
into arguments

• Results are often similar to pass-by-reference, but there are
some subtle situations where they are different

11CS406, IIT Dharwad

Value-Result Parameters

int x = 1

void main () {

foo(x, x);

print(x);

}

void foo(int y, value result int z)

{

y = 2;

z = 3;

print(x);

}

12

•What do the print

statements print?

•Answer:

print(x); //prints 3
print(x) //prints 1

CS406, IIT Dharwad

Read-only Parameters

• Used when callee will not change value of parameters

• Read-only restriction must be enforced by compiler

• E.g. const parameter in C/C++

• Enforcing becomes tricky when in the presence of aliasing
and control flow. E.g.

13

void foo(readonly int x, int y) {
int * p;
if (...) p = &x else p = &y
*p = 4
}

CS406, IIT Dharwad

Call-by-name Parameters

• The arguments are passed to the function before evaluation
• Usually, we evaluate the arguments before passing them

• Not used in many languages, but Haskell uses a variant

14

int x = 1
void main () {

foo(x+2);
print(x);

}

void foo(int y) {
z = y + 3; //expands to z = x + 2 + 3
print(z);

}

CS406, IIT Dharwad

Call-by-name Parameters

• Why is this useful?
• E.g. to analyze certain properties of a program/function –

termination

• Even if bar has an infinite loop, the program terminates.

15

void main () {
foo(bar());

}

void foo(int y) {
z = 3;
if(z > 3)

z = y + z;
}

CS406, IIT Dharwad

• Compiler assumes a runtime environment for execution of
the program.

• A C/C++ program in Linux OS has 4 segments of memory
• Every memory location is a box holding data/instruction

Program Layout in Memory

CS406, IIT Dharwad 16

Program Layout in Memory

• A program’s memory space is divided into four
segments:

1. Text
• source code of the program

2. Data
• Broken into uninitialized and initialized segments; contains space for

global and static variables. E.g. int x = 7; int y;

3. Heap
• Memory allocated using malloc/calloc/realloc/new

4. Stack
• Function arguments, return values, local variables, special registers.

17CS406, IIT Dharwad

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

$rbp

$rsp

18

(initialized to zero)

CS406, IIT Dharwad

• A function call or invocation is termed an activation

• Calls to functions in a program form activation tree

• Postorder traversal of the tree shows return sequence i.e.
the order in which control returns from functions

• Preorder traversal of the tree shows calling sequence

• In a sequential program, at any point in time, control
of execution is in any one activation

• All the ancestors of that activation are active i.e. have not
returned

Activation

CS406, IIT Dharwad 19

• Activations are managed through the help of
control stack

• A function call (activation) results in allocating a
chunk of memory called activation record or frame
on the stack (also called stack frame)

Activation

CS406, IIT Dharwad 20

Activation Record

• A sub-segment of memory on the stack
• Special registers $rbp and $rsp track the bottom and top of

the stack frame. These are the names in x86 architecture.

• $rbp – base pointer or frame pointer (fp)

• $rsp – stack pointer (sp)

21CS406, IIT Dharwad

Activation Record - Example

22

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp
main() Activation record

/ frame

CS406, IIT Dharwad

Activation Record - Example

23

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

CS406, IIT Dharwad

Activation Record - Example

24

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

bar()

CS406, IIT Dharwad

Activation Record - Example

25

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

CS406, IIT Dharwad

Activation Record - Example

26

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

main()

foo()

sp
baz()

CS406, IIT Dharwad

Activation Record – Example (Recursive
Functions)

27

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp

fact(2)

fact(1)

fact(0)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for fact n=0

CS406, IIT Dharwad

Activation Record – Example (Recursive
Functions)

28

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp

fact(2)

fact(1)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for n=0 popped off. 1 Returned.
CS406, IIT Dharwad

Activation Record – Example (Recursive
Functions)

29

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp
fact(2)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for n=1 popped off. 1 Returned.
CS406, IIT Dharwad

Activation Record – Example (Recursive
Functions)

30

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)
sp

Stack frame for fact n=3

Stack frame for n=2 popped off. 2 Returned.
CS406, IIT Dharwad

Activation Record – Example (Recursive
Functions)

31

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()
sp

Stack frame for n=3 popped off. 6 Returned.
CS406, IIT Dharwad

Activation Record

• What happens when a function is called?

1. fp and sp get adjusted

2. Memory for the activation record is allocated on stack

• The size of the memory allocated depends on local variables used by
the called function (consult function’s symbol table for this)

3. Each invocation of a function has its own instantiation of
local variables

• When the function call returns:

• Memory for the activation record is destroyed when the
function returns

32CS406, IIT Dharwad

Activation Record

• What is stored in the activation record?

Depends on the language being implemented:
• Temporaries

• Local vars

• Saved registers

• Return address, previous fp

• Return value

• Actual Params

• Who stores this information?
• Caller

• Callee
33

together execute calling sequence and return
sequence

CS406, IIT Dharwad

Application Binary Interface (ABI)

• How is data organized on the activation record?

• ABI is the specification on how data is provided to functions

• Caller saves or callee saves

• ABI is meant to deliver interoperability between different
compilers

• Compile the function using one compiler to create an object code,
Link object code with other code compiled using a different compiler

34

form the calling convention
CS406, IIT Dharwad

Typical Activation Record

35

Stack

..

fp arg 1

arg 2

arg n
(Higher address)

(Lower address)

local var 1

local var 2
..

local var m

return address

saved registers

sp

Previous frame

current frame

Callee accesses arguments using +ve offset
from FP:
argument1 = memory[FP]
argument2 = memory[FP+1] ..

Callee accesses local variables using –ve
offset from FP:
local var 1=memory[FP-1]
local var 2=memory[FP-2]

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

• When main calls function foo
1. The following are pushed on to the stack:

1. foo’s arguments
2. Space to hold foo’s return value
3. Address of the next instruction executed (in main) when foo

returns (return address)
4. Current value of $rbp (frame pointer)

$rsp is automatically updated (decremented) to point to current top of
the stack.

2. $rbp is assigned the value of $rsp

36

main() {
…
foo();
…

}

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

37

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

zReturn value
1234ABCD

main’s fp

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

38

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

1234ABCD

main’s fp

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

39

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

40

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

main’s
frame

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

41

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

main’s
frame

1234ABCDSaved frame ptr
foo’s fp

CS406, IIT Dharwad

Function call: Peeking at Activation
Record

42

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z

1234ABCD

x
2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

Saved frame ptr
foo’s fp

l1
l2

local var1

local var2

main’s
frame

foo’s
frame

CS406, IIT Dharwad

Function calls – Register Handling

• Did not use registers in the previous example (for parameter
passing)

• Registers are faster than memory. So, compiler should keep
parameters in registers whenever possible

• Modern calling convention places first few arguments in registers
(arg1 in r1, arg2 in r2, arg3 in r3…) and the remaining in memory.

• In x86 C-ABI, first 6 arguments are passed in registers

• What if callee wants to use registers r1, r2, r3 etc. for local
computation? Callee must save the registers in its stack frame.

43CS406, IIT Dharwad

Function calls – Register Handling

• Two options: caller saves or callee saves

• Caller Saves
• Caller pushes all the registers it is using on to the stack before

calling the function

• Restores the registers after the function returns

• Callee Saves
• Callee pushes all the registers it is going to use on the stack

immediately after being called

• Restores the registers just before it returns

44CS406, IIT Dharwad

45CS406, IIT Dharwad

Activation Record – Return Address and
Return Value

• Callee must be able to return to the caller when done

• Return address is the address of the instruction following the
function call

• Return address can be placed on the stack or on register

• The call instruction on modern machines places the return
address in a specific register

• Return value is placed in a specific register by the callee function

46CS406, IIT Dharwad

47CS406, IIT Dharwad

• SP is manipulated through push and pop
instructions

48

Push x:
stack_pointer--
Memory[stack_pointer] = x

Pop x:
x = Memory[stack_pointer]
stack_pointer--

CS406, IIT Dharwad

Stack Pointer

49CS406, IIT Dharwad

Question ?

Where are the command-line arguments stored?

How about environment variables such as
LD_LIBRARY_PATH and PATH?

50

Challenge Q: are there scenarios where
the activation record is required to be
allocated on the heap?

fun f(x) =
let

fun g(y) = x + y
in

g
end

val z = f(4)
val w = z(5)CS406, IIT Dharwad

Local Optimizations

CS406, IIT Dharwad 51

52CS406, IIT Dharwad

53

There is a better instruction available!

CS406, IIT Dharwad

54

ADD C, A, E LD C R4

LD A R5

ADD R4 R5 R6

ST R6 E

This LD is redundant

This LD is redundant

CS406, IIT Dharwad

55CS406, IIT Dharwad

56CS406, IIT Dharwad

57CS406, IIT Dharwad

58CS406, IIT Dharwad

59CS406, IIT Dharwad

60

Get the data present at address in R2 and put it in R1

CS406, IIT Dharwad

61CS406, IIT Dharwad

62CS406, IIT Dharwad

63CS406, IIT Dharwad

64CS406, IIT Dharwad

65

Maximal sequence of instructions that are
executed one after another (i.e. there are
no jump instructions OR no instruction is
the target of a jump)

Local optimizations are done on basic blocks. Global optimizations on control flow graphs
(CFGs), where the basic blocks are the nodes of the graph. Then, there are inter-procedural
optimizations, which span function calls. Later on CFGs and other kinds of optimizations.

CS406, IIT Dharwad

66CS406, IIT Dharwad

67CS406, IIT Dharwad

Example

68

Generated Code

(assembly)

3 Address Code Available expression(s)

Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”,
“T1 + C”, “T3 + T2”}

add r1 r2 r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

ld a r1;
ld b r2;

CS406, IIT Dharwad

Downsides (CSE)

69

T1 and T3 compute the same expression. This can be handled by an

optimization called value numbering.

ST R5 D

CS406, IIT Dharwad

Aliasing

70

• One of the biggest problems in compiler analysis is to

recognize aliases – different names for the same location

in memory

•Why do aliases occur?

•Pointers referring to the same location

•Function calls passing the same reference in two arguments

•Arrays referencing the same element

•Unions

•What problems does aliasing pose for CSE?
•when talking about “live” and “killed” values in optimizations like

CSE, we’re talking about particular variable names

•In the presence of aliasing, we may not know which variables get

killed when a location is written to

exercise: are T1 and T3 aliased in previous example?

CS406, IIT Dharwad

71CS406, IIT Dharwad

Single assignment form: a variable is assigned only
once i.e. appears only once in LHS.

72CS406, IIT Dharwad

Single assignment form and its use in
local optimizations

x=z+y
a=x
x=2*x

b=z+y
a=b
x=2*b

replace x with b

x=z+y
...
x=z+y

Neither z nor y can appear on
the LHS here in single
assignment form.

So, can be sure that this z+y is the same expression as
earlier. In the original code, if z or y were assigned to in
between the two expressions, then we would have used
different names, say, z1=..; y1=; then the last expression
would have to be rewritten as x=z1+y1.

Aids dead code elimination: if the variable is never used later, can safely
remove the statement where the variable is defined/assigned to.

Aids copy propagation: can replace all the uses of a variable downstream

Aids CSE:

Example – Local Optimizations

73

a=x**2
b=3
c=x
d=c*c
e=b*2
f=a+d
g=e*f

CS406, IIT Dharwad

Example – Local Optimizations

• Algebraic simplification – exploiting mathematical
properties of operators involved

74

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

CS406, IIT Dharwad

Example – Local Optimizations

• Copy propagation

75

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=3<<1
f=a+d
g=e*f

CS406, IIT Dharwad

Example – Local Optimizations

• Constant folding

76

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=3<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=6
f=a+d
g=e*f

CS406, IIT Dharwad

Example – Local Optimizations

• CSE

77

a=x*x
b=3
c=x
d=x*x
e=6
f=a+d
g=e*f

a=x*x
b=3
c=x
d=a
e=6
f=a+d
g=e*f

CS406, IIT Dharwad

Example – Local Optimizations

• Copy and Constant Propagation

78

a=x*x
b=3
c=x
d=a
e=6
f=a+d
g=e*f

a=x*x
b=3
c=x
d=a
e=6
f=a+a
g=6*f

CS406, IIT Dharwad

Example – Local Optimizations

• Dead code elimination

79

a=x*x
b=3
c=x
d=a
e=6
f=a+a
g=6*f

a=x*x
f=a+a
g=6*f

Anything else?

a=x*x
f=2*a
g=6*f

a=x*x
f=2*a
g=12*a

CS406, IIT Dharwad

