CS406: Compilers

Spring 2022

Week 7: Intermediate Code Generation (if, do-while,
for)

If construct with semantic actions

o If_stmt->if #start_if <b_expr> #testif then
<stmt_list> <else_part> endif; #gen_out_label

* else_part->else #gen _jump #gen_else label
<stmt_list>

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a
IF (a = 1)
ELSE Cif >—~—=
b := 2; thenN
ENDIF

1 Generate out label and store it in semantic record of if stmt

(labell)

The #start_if routine is responsible for this

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a
IF (a = 1)
b := 1; @
b := 2: then

J

STOREI 1 T2

2 Generate code for

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a

IF (a = 1)
b := 1;

if_stmt
ELSE <®©

2. Store the result of calling process op, STOREI 1 T2

“__u

where op is “= in the node cond
(bool _exprl=false)

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a = 2; STOREI Tl a The #testif routine handles this.
IF (a = 1)
b := 1; @
ELSE Cif =
b := 2; then =L15€
ENDIF

2. Create a label for the next else part (label 2). Generate
statement: JUMPO T2 label2

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a
IF (a = 1)
ELSE Cif O>=—=
b := 2; then clS€
ENDIF

3. Generate code for stmt_1ist1l
STOREI 1 T3
STOREI T3 b

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a Routine #gen_jump
IF (a = 1) handles this
ELSE Cif -
b :1= 2: then cL5€

i J
ENDIF

4. Generate unconditional jump to out label (labell).
JUMP labell

Code-generation — if-statement

Program text 3AC
INT a, b; STORETI 2 T1 Routine
a = 2; STOREIL T1 2 #gen_else_label
IF b(a = 11) handles this
=4 if stmt
ELSE if
b := 2;
ENDIF

5. Associate else part label (1abel2) with address of next
instruction i.e. generate a statement: LABEL label2

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a
IF (a = 1)
ELSE if —
b := 2; then clS€

ENDIF

5. Generate code for stmt_1ist2
STOREI 2 T4
STOREI T4 b

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1
a := 2; STOREI T1 a , _
IF (a = 1) Routine #gen_out_label handles this
b := 1; <i2i€i¥%§i:>
ELSE Cif =
b := 2; then 215€
ENDIF

5. Associate out label (1abell) with address of next instruction
i.e. generate a statement: LABEL labell

Observations

 We added semantic actions with tokens IF, ELSE,
ENDIF

* Generated code is equivalent but not exact

e e.g. “NE a T2 labell” is replaced with an equivalent
“JUMPO bool_expr labell”

* Done in one pass ?

Will this approach work when generating machine
code directly?

If construct with semantic actions

o [f_stmt->if #start_if <b_expr> #testif then
<stmt_list> <optional_elsif part> <else_ part>
endif; #gen_out_label

e <optional_elsif part>-> elsif #gen_jump
#tgen else l|abel <b_expr> #testif then <stmts>

* Else part->else #gen_jump #gen_else label
<stmt_list>

Exercise: augment the grammar rule to handle elsif
blocks.

Code-generation — if-statement

Program text 3AC
INT a, b; STOREI 2 T1 //a = 2
a := 2; STOREI T1 a

IF (a = 1) STOREI 1 T2 //a = 1?
b := 1; NE a T2 labell
ELSIF (TRUE) |STOREI 1 T3 //b =1
b := 2; STOREI T3 b
ENDIF JUMP label2 //to out label
LABEL labell //elsif label
STOREI 1 T4 //TRUE can be handled by checking 1 = 1°?
STOREI 1 T5
NE T4 T5 label3 //jump to the next elsif label
STOREI 2 T6 //b := 2
STOREI T6 b
JUMP label2 //jump to out label
LABEL label3 //out label
LABEL label2 //out label

do-while

 do{S}while(B); //s is executed at least once
and again and again and again... while B remains true

do-while

e do{S}while(B); //s is executed at least once
and again and again and again... while B remains true

do #beginloop {S} while(B) #testloop ; #endloop

LOOP:
<stmt list>
bool #beginloop
<boo.l_expr> create labels LOOP and OUT
j<lop> OUT generate LABEL LOOP
jmp LOOP #testloop

Check if the conditional statement B
has the correct type (Boolean)

OUT:

#endloop
Generate JUMPO OUT
Generate JUMP LOOP

repeat-until

e repeat{S}tuntil(B); //s is executed at least

once and again and again and again... while B remains
false

repeat-until

e repeat{S}tuntil(B); //s is executed at least
once and again and again and again... while B remains

false

LOOP:
<stmt_list>
<bool expr>
j<lop> LOOP

OUT:

For loops

for (<init_stmt>;<bool_expr>;<incr_stmt>)
<stmt_list>
end

init cond next_stmt body

4 \
CDICSICEPIETD

19

Generating code: for loops

for (<init_stmt>;<bool_expr>;)
end ® Execute init_stmt first
® Jump out of loop if
bool expr is false
v ® Execute incr_stmt after
<init_stmt> block, jump back to top
LOOP: of loop
<bool_expr>
- '
J<top> OUT ® Question:Why do we
INCR: have the INCR label?
jmp LOOP
OuT:

20

Switch statements

® Generated code should
evaluate <expr> and make
sure that some case matches
the result

default: <stmt_list> ® Question: how to decide

end where to jump?

switch (<expr>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>

21

Deciding where to jump

Problem: do not know which label to jump to until switch
expression is evaluated

Use a jump table: an array indexed by case values, contains
address to jump to

® |f table is not full (i.e., some possible values are skipped),
can point to a default clause

e [f default clause does not exist, this can point to error
code

e Problems
e |f table is sparse, wastes a lot of space

e If many choices, table will be very large

22

Jump table example

Consider the code:
((xxxx) is address of code)

Case x is

(0010) When 0: stmts
(0017) When |:stmts
(0192) When 2: stmts
(0198) When 3 stmts;
(1000) When 5 stmts;
(1050) Else stmts;

Table only has one

Unnecessary row
(for choice 4)

Jump table has 6 entries:

0 [JUMPOOIO
| |JuMP 0017
2 [juMP 0192
3 |JuMP 0198
4 [JUMP 1050
5 |[JUMP 1000

23

Jump table example

Consider the code:
((>xxx) |s address of code)

Case x is

(0010) When 0: stmtsQ
(0017) When |:stmts|
(0192) When 2: stmts2
(0198) When 3 stmts3
(1000) When 987 stmts4
(1050) When others stmts5

Table only has 983 unnecessary rows.
Doesn’t appear to be the right thing to
do! NOTE: table size is
proportional to range of choice
clauses, not number of clauses!

Jump table has 6 entries:

0

JU

MP 0010

MP 0017

MP 0192

MP 0198

SHIWIN

MP

050

MP

050

986

MP

050

987

clclcliclclclc

MP

000

24

Linear search example

Consider the code:
(xxxx) Is offset of local
Code start from the
Jump instruction

Case x is

(0010) When 0: stmts
(0017) When |:stmts
(0192) When 2: stmts
(1050)

|050) When others stmts;

If there are a small number of
choices, then do an in-line linear
search. A straightforward way to do

this is generate code analogous to an
IFTHEN ELSE.

If (x == 0) then stmts|;
Elseif (x = |) then stmts2;
Elseif (x = 2) then stmts3;
Else stmts4;

O(n) time, n is the size of the table, for each jump.

25

Dealing with jump tables

switch (<exprs>)
case <const_list>: <stmt_list>
case <const_list>: <stmt_list>

default: <stmt_list> ® Generate labels, code, then build
end jump table
<exprs ® Put jump table after generated
<code for jump table> code
LABELO:
<stmt_list> ® Why do we need the OUT label?
LABEL1:

- °
<stmt_list> In case of break statements

DEFAULT:
<stmt_list>
oUT:

26

Suggested Reading

* Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman: Compilers:
Principles, Techniques, and Tools, 2/E, AddisonWesley 2007

e Chapter 2 (2.8), Chapter 6(6.2, 6.3, 6.4)

* Fisher and LeBlanc: Crafting a Compiler with C
* Chapter 7 (7.1, 7.3), Chapter 11 (11.2)

27

Review/Practice

Which of the following is a valid string in the language
specified by the CFG:

1. S -> aXa$
2. X -> A
3. | by
4. Y -> A
5 | cXc

1. abcba

2. acca

3. aba

4. abcbcba

Hint: make higher-level reasoning with the help of grammar rules. E.g. rule 5 implies
that ‘c’s appear in pairs. Rule 3 implies that a ‘c’ can appear only if ‘b’ is present.
Rules 3 and 5 together imply that the last ‘b’ in any string must appear before a ‘c’.

In bottom-up parsing, what is the sequence of

Review/Practice

derivations that you would get to match the input

string: - (id+id)+id

t -(id+id)+id .
-(id+id)+B .

-(id+id)+A

-(B+id)+A

-(B+B)+A

- (B+A)+A

-(A)+A

-B+A

B+A

A

Hint: right-most derivation in reverse.

-(id+id)+id
-(B+id)+id

- (B+B)+id
-(B+B)+B
-(B+A)+B
-(A)+B

-B+B

B+B

B+A

A

-(id+id)+id
-(B+id)+id
-(B+B)+id
-(B+A)+id
-(A)+id
-B+id

B+id

B+B

B+A

A

The Grammar:
A ->B

B+A
B -> -B
id
(A)

-(id+id)+id
-(id+B)+id
-(id+A)+id
-(B+A)+id
-(A)+id
-B+1id

B+id

B+B

B+A

A

Review/Practice

. . . The Grammar:
In recursive-descent parsing, what is the sequence of A

derivations that you would have to try before >BEA
matching the input string: 1d+id B -> -B
id
(A)
e A e A e A c A
.- B . B+A . "B
. id . id+A * B+A ©8
e B+A e id+B) {Ld+A ¢
] .. e 1id+B (A)
e 1id+A id+id . id+id e B+A
« id+B ° -B+A
« id+id *© id+A
 id+B
v Hint: try all productions in order shown in * id+B

the grammar. * id+id

1.
2.

Review/Practice

S->Ab$%.

st

S->Ab.$

10

Complete the CFSM (fill state 5)

The Grammar:

S -> Ab%
A -> (bA)
A -> (A)
. .) A -> X
Fill the table and and add new entries if needed
Parse Stack Prefix Parser Action
matched
l(((XII
(
5 {:P 7
->(b.A) 8
B JA->.(bA) | A AT>(bA.)
? —>.(A))
->.X v 9
A->(bA).

Hint: add items to form a closure if .
preceeds a non-terminal.

Review/Practice

* Draw the AST for the expression and generate 3-address
codea :=b +c *d+ 1 ;
e assume bison declarations:
Bleft *
Bleft +

Hint: + has higher priority than * and both operators are left associative. So,
the resulting expressionis treatedas:a := ((b + ¢c) * (d + 1)) ;

Review/Practice

* Your language has a looping construct like C’s do-while construct:

do{S;;..;S,; Jwhile(cond,); Statements S,..S, are executed once before evaluating the
condition cond,. The statements are executed repeatedly till the condition cond, becomes false.

* Pascal has the repeat-until construct:

repeat{R;;..;R,; Juntil(cond,); Statements R;..R, are executed once before evaluating the
condition cond,. The statements are executed repeatedly till the condition cond, becomes true.

* Now, you want to remove the do-while feature in your language and introduce a repeat-
while construct:

repeat{T,;..;T,; Jwhile(cond;); Statements T,..T,, are executed once before evaluating the
condition cond;. The statements are executed repeatedly till the condition cond; becomes false.

What phase(s) of the compiler you must change to implement the repeat-while construct?
(explanation in support of your choices are welcome).

Assume keywords cannot be used as identifiers in your language

Hint: notice that meaning stays the same (for do-while and repeat-
while). Only the keyword has changed.

Review/Practice

* |sthe Grammar LL(1) ?

1.S5-> A$
2.A-> XBC
3.A->CB
4.B->yB
5.B->A
6.C->X

Hint: look at rules 2, 3, and 6. ..xB..->..xy.. is a prefix that can be derived
using more than one way.

