
CS406: Compilers
Spring 2022

Week 6: Semantic Processing: AST construction,
Intermediate Code Generation

CS406, IIT Dharwad 1

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

2

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree

CS406, IIT Dharwad

Start by calling parser function E. Note the call
stack contains E(). The parse tree is not
constructed. This is a visualization aid.

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

3

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E1()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree

INTLITERAL

CS406, IIT Dharwad

E() calls E1(). This is like predicting rule 1.

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

4

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E1()
IsTerm()

next token

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

E

Call stack Parse tree

INTLITERAL

CS406, IIT Dharwad

E1() calls IsTerm() with an expectation that
INTLITERAL is the next token.

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

5

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E1()
IsTerm()

next token

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

E

Call stack Parse tree

INTLITERAL

IsTerm() calls GetNextToken() which returns LPAREN.

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

6

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E1()
IsTerm()

next token

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

E

Call stack Parse tree

INTLITERAL

IsTerm() calls GetNextToken() which returns LPAREN.
In addition, GetNextToken() advances the ‘next
token’ pointer.

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

7

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E1()
IsTerm()

next token

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

E

Call stack Parse tree

INTLITERAL

IsTerm() calls GetNextToken() which returns LPAREN.
In addition, GetNextToken() advances the ‘next
token’ pointer. There is a mismatch (IsTerm expects
INTLITERAL (tok=INTLITERAL) but nextToken is
LPAREN. So returns NULL.

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

8

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E1()

next token

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

E

Call stack Parse tree

INTLITERAL
E1 returns NULL because IsTerm returned NULL
(note that an entry from call stack is popped off)

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

9

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree

E1 returning NULL implies that predicting rule 1 failed.
ret is NULL (note that an entry from call stack is
popped off).

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

10

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree

E restores ‘next token’ pointer back to the saved
pointer prevToken (using SetCurTokenSequence())

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

11

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree

Calls E2. This is like predicting Rule 2. Note the
parse tree. Again, the tree is not constructed and
is used only to visualize the parsing

(E op E)

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

12

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
...

E

Call stack Parse tree

E2 check for LPAREN succeeds (note
‘next token’ pointer is moved forward
after the call to GetNextToken().)

(E op E)

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

13

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
...

E

Call stack Parse tree

Calls E()

(E op E)

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

14

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree E calls E1() to predict rule 1 to match the E
following (in the parse tree

(E op E)

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

15

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()
E1()

next token

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

E

Call stack Parse tree E1 calls IsTerm() and expects INTLITERAL

(E op E)

INTLITERAL

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

16

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()
E1()
IsTerm()

next token

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

E

Call stack Parse tree Call to GetNextToken() in IsTerm() now
returns INTLITERAL and advances the
pointer. The if condition is true.

(E op E)

INTLITERAL

CS406, IIT Dharwad

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

17

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()
E1()
IsTerm()

next token

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

E

Call stack Parse tree
AST Node is created and stores the INTLITERAL’s
value returned by the scanner (via s-
>GetNextToken()). Note that in this example we
are storing the string corresponding to the integer
val.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

18

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()
E1()
IsTerm()

next token

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

E

Call stack Parse tree
IsTerm() returns the pointer to the tree node
created.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

19

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()
E1()

next token

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

E

Call stack Parse tree
E1 returns the pointer to the tree node.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

20

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
E()

next token

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

E

Call stack Parse tree
E returns the pointer to the tree node.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

21

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
...

E

Call stack Parse tree
E2() now has a non-null value set for left (left is a
pointer to the root of the left subtree). The if
condition is false.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

22

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
...

E

Call stack Parse tree
E2() calls Op()

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

23

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()
Op()

next token

TreeNode* OP(Scanner* s) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) ||
(tok == DIV))

ret = CreateTreeNode(tok.val);
return ret;

}

E

Call stack Parse tree
Op() first matches the next token with ADD and creates a
node with value ‘+’. It then returns a pointer to the tree node
just created. (note the next token pointer is also advanced)

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

“+”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

24

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

E2(){
...
TreeNode* root = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root; }

E

Call stack Parse tree
Now ‘root’ in E2 is set to a non-null value. E() is called next.
E() in turn calls E1(), which calls IsTerm() that creates a tree
node with value “3” and returns a pointer to it.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

“+”

“3”

AST Construction with Hand-written
Parser

Input string: (2+3)

Sequence of tokens given by scanner: LPAREN INTLITERAL ADD INTLITERAL RPAREN

25

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB

| MUL | DIV

E()
E2()

next token

E2(){
...
TreeNode* root = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root; }

E

Call stack Parse tree
Lastly, the call to GetNextToken() in E2() returns RPAREN
and the following if condition fails. Following this failure,
the left and right child pointers of the ‘root’ node are set
and the root node is returned.

(E op E)

INTLITERAL

CS406, IIT Dharwad

“2”

“+”

“3”

Observations - AST Construction with
Hand-written Parser

1. The AST is created bottom-up

2. Value associated with INTLITERAL/OP is added as
information to the AST node

3. Pointer/reference to AST node is returned / passed up
the parse tree

26CS406, IIT Dharwad

• What did we do when we saw an INTLITERAL?
• Create a TreeNode
• Initialize it with a value (string equivalent of INTLITERAL

in this case)
• Return a pointer to TreeNode

Identifying Semantic Actions for FPE
Grammar

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

E -> INTLITERAL
triggers

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}
CS406, IIT Dharwad 27

• What did we do when we saw an E (parenthesized
expression)?
• Create an AST node with two children. The node contains

the binary operator OP stored as a string. Children point
to roots of subtrees representing E.

Identifying Semantic Actions for FPE
Grammar

E -> (E op E)
triggers TreeNode* E2(Scanner* s) {

TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root;

}
CS406, IIT Dharwad 28

• What did we do when we saw an E (parenthesized
expression)?
• Create an AST node with two children. The node contains

the binary operator OP stored as a string. Children point
to roots of subtrees representing E.

• Returned reference to root

Identifying Semantic Actions for FPE
Grammar

CS406, IIT Dharwad 29

“2”

“+”

“3”

Identifying Semantic Actions for
FPE Grammar

• We can capture the semantic actions identified in the
previous slides for INTLITERAL and parenthesized E with the
help of notations augmenting grammar rules

CS406, IIT Dharwad 30

Syntax Directed Definition

• Notation containing CFG augmented with attributes and
rules

• E.g. E -> INTLITERAL

E -> (E op E)

op -> ADD

| SUB

| MUL

| DIV

E.val = INTLITERAL.val

E.val = E1.val op E2.val

op.val = ADD.val

op.val = SUB.val

op.val = MUL.val

op.val = DIV.val

CS406, IIT Dharwad 31

Syntax Directed Definition

• Being more precise (w.r.t. our example)
• E.g.

• Attributes are of two types: Synthesized, Inherited

E -> INTLITERAL

E -> (E op E)

op -> ADD

| SUB

| MUL

| DIV

E.node = new TreeNode(INTLITERAL.val)

E.node = TreeNode(op.node, E1.node, E2.node)

op.node = new TreeNode(“+”)

op.node = new TreeNode(“-”);

op.node = new TreeNode(“*”);

op.node = new TreeNode(“/”);

CS406, IIT Dharwad 32

Syntax Directed Translation

• Complementary notation to SDDs containing CFG augmented
with program fragments

• E.g.

• Less readable than SDD. However, more efficient for
optimizing

E -> INTLITERAL

E -> (E op E)

op -> ADD

| SUB

| MUL

| DIV

{E.yylval = INTLITERAL.yylval;}

{E.yylval = eval_binary(E1.yylval,
op, E2.yylval)}

{op.yylval = ADD.yylval}

{op.yylval = SUB.yylval}

{op.yylval = MUL.yylval }

{op.yylval = DIV.yylval}

CS406, IIT Dharwad 33

34
Slide courtesy: Milind Kulkarni

35
Slide courtesy: Milind Kulkarni

36
Slide courtesy: Milind Kulkarni

37

Expressions Example

x + y + 5

Slide courtesy: Milind Kulkarni

38

Expressions Example

x + y + 5

identifier “x”

Slide courtesy: Milind Kulkarni

39

Expressions Example

x + y + 5

identifier “x” identifier “y”

Slide courtesy: Milind Kulkarni

40

Expressions Example

x + y + 5

identifier “x” identifier “y”

binary_op

operator: +

Slide courtesy: Milind Kulkarni

41

Expressions Example

x + y + 5

identifier “x” identifier “y”

binary_op

operator: +
literal “5”

Slide courtesy: Milind Kulkarni

42

Expressions Example

x + y + 5

identifier “x” identifier “y”

binary_op

operator: +
literal “5”

binary_op

operator: +

Slide courtesy: Milind Kulkarni

Intermediate Representation

• Compilers need to synthesize code based on the
‘interpretation’ of the syntactic structure

• Code can be generated with the help of AST or

can directly do it in semantic actions (recall: SDTs
augment grammar rules with program fragments. Program fragments

contain semantic actions.)

• Generated code can be directly executed on the
machine or an intermediate form such as 3-address
code can be produced.

43

3 Address Code (3AC)

• What is it? sequence of elementary program instructions
• Linear in structure (no hierarchy) unlike AST

• Format:

op A, B, C //means C = A op B.

//op: ADDI, MULI, SUBF, DIVF, GOTO, STOREF etc.

• E.g.

program text 3-address code

44

ADDF x y T1
STOREF T1 z

INT x;
FLOAT y, z;
z:=x+y;

DIVI b c T1
SUBI a T1 T2
STOREI T2 d

INT a, b, c, d;
d = a-b/c;

Comments:
d = a-b/c; is broken into:
t1 = b/c;
t2 = a–t1;
d = t2;

45

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman: Compilers:
Principles, Techniques, and Tools, 2/E, AddisonWesley 2007

• Chapter 2 (2.3, 2.5, 2.7, 2.8), Chapter 4 (4.6), Chapter 5 (5.1, 5.2.3, 5.2.4, 5.4), Chapter 6(6.2)

• Fisher and LeBlanc: Crafting a Compiler with C
• Chapter 6 (6.2-6.4), Chapter 7 (7.1, 7.3), Chapter 8 (8.2, 8.3)

Suggested Reading

3 Address Code (3AC)

• Why is it needed? To perform significant optimizations such
as:

• common sub-expression elimination

• statically analyze possible values that a variable can take etc.

How?

Break the long sequence of instructions into “basic blocks” and
operate on/analyze a graph of basic blocks

46

3 Address Code (3AC)

• How is it generated? Choices available:
1. Do a post-order walk of AST

• Generate/Emit code as a string/data_object (seen later) when you
visit a node

• Pass the code to the parent node

Parent generates code for self after the code for children is
generated. The generated code is appended to code passed by
children and passed up the tree

2. Can generate directly in semantic routines or after building AST 47

data_object generate_code() {
//preprocessing code
data_object lcode=left.generate_code();
data_object rcode=right.generate_code();
return generate_self(lcode, rcode);

}

3 Address Code (3AC)

• Generating 3AC directly in semantic routines.

• Walk the AST in post-order and infer at an internal node
(labelled op) that it computes a constant expression

48

MULI 3 4 T1
ADDI T1 5 T2
ADDI T2 6 T3
ADDI T3 7 T4
STOREI T4 x

INT x;
x:=3*4+5+6+7;

Comments:
x = 3*4+5+6+7 is broken into:
t1 = 3*4;
t2 = 5+t1;
t3 = 6+t2;
t4 = 7+t3;
x = t4

STOREI 30 x
INT x;
x:=3*4+5+6+7;

Comments:

6 7

+

L-values and R-values

• Need to distinguish between meaning of identifiers
appearing on RHS and LHS of an assignment statement

• L-values: addresses which can be loaded from or stored into

• R-values: data often loaded from address
• Expressions produce R-values

• Assignment statements: L-value := R-value;

49

i := 5;
i := i + 1;

//RHS specifies data that is computed/read.
LHS specifies address where data is stored.

a refers to memory location named
a. We are storing into that memory
location (L-value)

a refers to data stored in the memory
location named a. We are loading from
that memory location to produce R-value

a := a;

Temporaries

• Earlier saw the use of temporaries e.g.

• Think of them as unlimited pool of registers with memory
to be allocated later

• Optionally declare them in 3AC. Name should be unique
and should not appear in program text

• Temporary can hold L-value or R-value

50

ADDF x y T1
STOREF T1 z

INT x;
FLOAT y, z;
z:=x+y;

INT x
FLOAT y z T1
ADDF x y T1
STOREF T1 z

Temporaries and L-value

• Yes, a temporary can hold L-value. Consider:

Take L-value of b, don’t load from it, treat it as an R-value and
store the resulting data in a temporary

51

a := &b; //& is address-of operator. R-value
of a is set to L-value of b.
//expression on the RHS produces data that is
an address of a memory location.

Recall: L-Value = address which can be loaded
from or stored into, R-Value = data (often)
loaded from addresses.

Dereference operator

• Consider:

a appearing on LHS is loaded from to produce R-value. That
R-value is treated as an address that can be stored into.

Take R-value of a, treat it as an L-value (address of a memory
location) and then store RHS data

52

a := b; // is dereference operator. R-value
of a is set to R-value of b.
//expression on the LHS produces data that is
an address of a memory location.

Summary: pointer operations & and * mess with meaning of L-value and R-values

Observations

• Identifiers appearing on LHS are (normally) treated as L-
values. Appearing on RHS are treated as R-values.

• So, when you are visiting an id node in an AST, you cannot
generate code (load-from or store-into) until you have seen how
that identifier is used. => until you visit the parent.

• Temporaries are needed to store result of current
expression

• a data_object should store:
• Code
• L-value or R-Value or constant
• Temporary storing the result of the expression

53

54

Slide courtesy: Milind Kulkarni

55

Slide courtesy: Milind Kulkarni

Example - assignment statement

56

w:=x+y*(z+3);

AST for

Visit Node a:
Temp: w

Type: l-value

Code: --

Example - assignment statement

57

w:=x+y*(z+3);

AST for

Visit Node b:
Temp: x

Type: l-value

Code: --

Example - assignment statement

58

w:=x+y*(z+3);

AST for

Visit Node c:
Temp: y

Type: l-value

Code: --

Example - assignment statement

59

w:=x+y*(z+3);

AST for

Visit Node d:
Temp: z

Type: l-value

Code: --

Example - assignment statement

60

w:=x+y*(z+3);

AST for

Visit Node e:
Temp: 3

Type: constant

Code: --

Example - assignment statement

61

w:=x+y*(z+3);

AST for

Visit Node f:
Temp: T1

Type: R-value

Code:

LD z T2

ADD T2 3 T1

Example - assignment statement

62

w:=x+y*(z+3);

AST for

Visit Node g:
Temp: T3

Type: R-value

Code:

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

Example - assignment statement

63

w:=x+y*(z+3);

AST for

Visit Node h:
Temp: T5

Type: R-value

Code:

LD x T6

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

ADD T6 T3 T5

Example - assignment statement

64

w:=x+y*(z+3);

AST for

Visit Node i:
Temp: NA

Type: NA

Code:

LD x T6

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

ADD T6 T3 T5

ST T5 w

65

Slide courtesy: Milind Kulkarni

66

Slide courtesy: Milind Kulkarni

67

Slide courtesy: Milind Kulkarni

68

Slide courtesy: Milind Kulkarni

Code-generation – if-statement

69

INT a, b;

Program text 3AC

Code-generation – if-statement

70

INT a, b;

Program text 3AC

Make entries in the
symbol table

Code-generation – if-statement

71

INT a, b;
a := 2;

Program text 3AC

Code-generation – if-statement

72

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Return an object
containing identifier
details after verifying
that “a” is present in the
symbol table.

:=

a 2

Code-generation – if-statement

73

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Pass up the identifier.

2. “2” is right-child,
type=const. No code
generated.

:=

a 2

Code-generation – if-statement

74

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Pass up the identifier.

2. “2” is right-child,
type=const. No code
generated.

3. Create a temporary T1 to
store the result of the
expression

:=

a 2

Code-generation – if-statement

75

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Pass up the identifier.

2. “2” is right-child,
type=const. No code
generated.

3. Create a temporary T1 to
store the result of the
expression
• Current node stores the

op ‘:=‘. A call to
process_op stores the
RHS data in LHS

:=

a 2

Code-generation – if-statement

76

INT a, b;
a := 2;

Program text 3AC

STOREI 2 T1
STOREI T1 a

Code-generation – if-statement

77

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

Code-generation – if-statement

78

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

1. Generate code for cond

Code-generation – if-statement

79

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

1. Generate code for cond
STOREI 1 T2
NE a T2 label1

Note that to generate this instruction when cond node is visited, we need
information about the label. This information can be passed on as a semantic
record for the child node of the if construct. The record can be created by the IF
construct (when the keyword IF is seen) and would be updated subsequently.

Code-generation – if-statement

80

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2. Generate code for stmt_list1

Code-generation – if-statement

81

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2. Generate code for stmt_list1 STOREI 1 T3
STOREI T3 b

Code-generation – if-statement

82

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for stmt_list2

Code-generation – if-statement

83

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for stmt_list2
JUMP label2
LABEL label1
STOREI 2 T4
STOREI T4 b
JUMP label2

The statements shown in red can be part of the semantic
routines that correspond to handling the else part.

Code-generation – if-statement

84

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for if_stmt

LABEL label2

Code-generation – if-statement

85

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

STOREI 2 T1 //a := 2
STOREI T1 a
STOREI 1 T2 //a = 1?
NE a T2 label1
STOREI 1 T3 //b := 1
STOREI T3 b
JUMP label2 //to out label
LABEL label1 //else label begins here
STOREI 2 T4 //b := 2
STOREI T4 b
JUMP label2 //jump to out label
LABEL label2 //out label

Program text 3AC

Can also generate this code after seeing the token ENDIF (rather than as part of the
routine that is executed when the whole production is matched)

Jumps and Labels?

• Who will generate labels?

• When will the labels be generated?

• To what addresses will the labels be associated
with?

How are targets of jumps decided?

86

87

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman: Compilers:
Principles, Techniques, and Tools, 2/E, AddisonWesley 2007

• Chapter 2 (2.8), Chapter 6(6.2, 6.3, 6.4)

• Fisher and LeBlanc: Crafting a Compiler with C
• Chapter 7 (7.1, 7.3), Chapter 11 (11.2)

Suggested Reading

