
CS406: Compilers
Spring 2022

Week 5: Parsers – Bottom-up Parsing (background
concepts), Bottom-up parsing (use of goto and action

tables)

CS406, IIT Dharwad 1

Concept: configuration / item

➢Configuration or item has a form:

A -> X1... Xi Xi+1 ... Xj

➢Dot can appear anywhere

➢Represents a production part of which has been matched
(what is to the left of Dot)

➢LR parsers keep track of multiple (all) productions that can
be potentially matched
➢We need a configuration set

CS406, IIT Dharwad 2

Concept: configuration / item

➢E.g. configuration set

stmt -> ID := expr

stmt -> ID : stmt

stmt -> ID

➢Dot at the extreme left of RHS of a production denotes that
production is predicted

➢Dot at the extreme right of RHS of a production denotes
that production is recognized

➢if Dot precedes a Non-Terminal in a configuration set, more
configurations need to be added to the set

CS406, IIT Dharwad 3

Corresponding to productions:
stmt -> ID := expr
stmt -> ID : stmt
stmt -> ID

Concept: closure

➢For each configuration in the configuration set,

A -> α Bγ, where B is a non-terminal,

1 add configurations of the form:

B -> δ

2 if the addition introduces a configuration with Dot
behind a new non-Terminal N, add all configurations having
the form N -> ε

Repeat 2 when another new non-terminal is
introduced and so on..

CS406, IIT Dharwad 4

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 5

S -> E$

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Non-terminal

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 6

S -> E$
E -> E+T

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Non-terminal

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 7

S -> E$
E -> E+T
E -> T

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Non-terminal

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 8

S -> E$
E -> E+T
E -> T

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

New Non-terminal

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 9

S -> E$
E -> E+T
E -> T
T -> ID

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

New Non-terminal

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 10

S -> E$
E -> E+T
E -> T
T -> ID
T -> (E)

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

New Non-terminal

Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 11

S -> E$
E -> E+T
E -> T
T -> ID
T -> (E)

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Concept: successor

➢E.g. successor ({S -> E$}, E)

➢Consider all symbols that are to the immediate right of Dot
and compute respective successors
➢You must compute closure of successor before finalizing items in

successor

CS406, IIT Dharwad 12

S -> E$
E -> E+T
E -> T
T -> ID
T -> (E)

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

S -> E $
E -> E +T

E

Concept: CFSM

➢Each configuration set becomes a state

➢The symbol used as input for computing the
successor becomes the transition

➢Configuration-set finite state machine (CFSM)
➢The state diagram obtained after computing the chain of

all successors (for all symbols) starting from the
configuration involving the first production

CS406, IIT Dharwad 13

Example: CFSM

CS406, IIT Dharwad 14

Grammar
P->S
S->x;S
S->e

Start with a configuration for the first production

P-> S

Example: CFSM

CS406, IIT Dharwad 15

Grammar
P->S
S->x;S
S->e

Compute closure

P-> S Non-terminal

Example: CFSM

CS406, IIT Dharwad 16

Grammar
P->S
S->x;S
S->e

Add item

P-> S
S-> x;S

Example: CFSM

CS406, IIT Dharwad 17

Grammar
P->S
S->x;S
S->e

Add item

P-> S
S-> x;S
S-> e

Example: CFSM

CS406, IIT Dharwad 18

Grammar
P->S
S->x;S
S->e

No new non-terminal before Dot. This becomes a state in CFSM

P-> S
S-> x;S
S-> e

state 0

Example: CFSM

CS406, IIT Dharwad 19

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol x

P-> S
S-> x;S
S-> e

state 0

x

Consider items (in state 0), where x is to the immediate right of Dot.

Advance Dot by one symbol.

Example: CFSM

CS406, IIT Dharwad 20

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where x is to the immediate right of Dot.

Advance Dot by one symbol.

Example: CFSM

CS406, IIT Dharwad 21

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where x is to the immediate right of Dot.

Advance Dot by one symbol.

No non-terminals immediately after Dot in the successor. So, no

configurations get added. Successor becomes another state in

CFSM.

state 1

Example: CFSM

CS406, IIT Dharwad 22

Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;

Example: CFSM

CS406, IIT Dharwad 23

Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S

Example: CFSM

CS406, IIT Dharwad 24

Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of

state 1. So, add configurations.

state 1

;
S->x; S

Example: CFSM

CS406, IIT Dharwad 25

Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of

state 1. So, add configurations.

state 1

;
S->x; S
S-> x;S

Example: CFSM

CS406, IIT Dharwad 26

Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of

state 1. So, add configurations.

state 1

;
S->x; S
S-> x;S
S-> e

Example: CFSM

CS406, IIT Dharwad 27

Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of

state 1. So, add configurations. No more items to be added.

Becomes another state in CFSM.

state 1

;
S->x; S
S-> x;S
S-> e
state 2

Example: CFSM

CS406, IIT Dharwad 28

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where e is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

Example: CFSM

CS406, IIT Dharwad 29

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where e is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

Example: CFSM

CS406, IIT Dharwad 30

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where e is to the immediate right of Dot.

Advance Dot by one symbol. No more items to be added. Becomes

another state in CFSM.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

Example: CFSM

CS406, IIT Dharwad 31

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where x is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

Example: CFSM

CS406, IIT Dharwad 32

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where x is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x

Example: CFSM

CS406, IIT Dharwad 33

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where S is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S

Example: CFSM

CS406, IIT Dharwad 34

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where S is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

Example: CFSM

CS406, IIT Dharwad 35

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where S is to the immediate right of Dot.

Advance Dot by one symbol. No more items to be added. Becomes

another state in CFSM.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

Example: CFSM

CS406, IIT Dharwad 36

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where e is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

Example: CFSM

CS406, IIT Dharwad 37

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where e is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

Example: CFSM

CS406, IIT Dharwad 38

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where S is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

Example: CFSM

CS406, IIT Dharwad 39

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where S is to the immediate right of Dot.

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S

Example: CFSM

CS406, IIT Dharwad 40

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where S is to the immediate right of Dot.

Advance Dot by one symbol. Cannot expand CFSM anymore.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Example: CFSM

CS406, IIT Dharwad 41

• All states with Dot at extreme right become reduce states

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Example: CFSM

CS406, IIT Dharwad 42

• All states with Dot at extreme right become reduce states

Reduce 3

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Grammar
1) P->S
2) S->x;S
3) S->e

Example: CFSM

CS406, IIT Dharwad 43

• All states with Dot at extreme right become reduce states

Reduce 2

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Grammar
1) P->S
2) S->x;S
3) S->e

Example: CFSM

CS406, IIT Dharwad 44

• All states with Dot at extreme right become reduce states

Accept

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Grammar
1) P->S
2) S->x;S
3) S->e

Example: CFSM

CS406, IIT Dharwad 45

• Remaining states become shift states

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Grammar
1) P->S
2) S->x;S
3) S->e

Conflicts

CS406, IIT Dharwad 46

• What happens when a state has Dot at the extreme right

for one item and in the middle for other items?

Shift-reduce conflict
Parser is unable to decide between shifting and reducing

• When Dot is at the extreme right for more than one items?

Reduce-Reduce conflict
Parser is unable to decide between which productions to choose for

reducing

Example: goto table

CS406, IIT Dharwad 47

• construct transition table from CFSM.
• Number of rows = number of states

• Number of columns = number of symbols

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

Example: goto table

CS406, IIT Dharwad 48

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

state x ; e P S

0 1 3 5

1 2

2 1 3 4

3

4

5

Example: action table

CS406, IIT Dharwad 49

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

state x

0 Shift

1 Shift

2 Shift

3 Reduce 3

4 Reduce 2

5 Accept

Example: action table

CS406, IIT Dharwad 50

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S

state 4

e

S

P->S
state 5

LR(0) Parsing

• Previous Example of LR Parsing was LR(0)
• No (0) lookahead involved

• Operate based on the parse stack state and with goto
and action tables (How?)

51CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α == saying that a e.g.
prefix of x;x is seen in the input string

52CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α == saying that a
prefix of x;x is seen in the input string

Go from state 0 to state 1 consuming x

53CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α == saying that a
prefix of x;x is seen in the input string

Go from state 1 to state 2 consuming ;

54CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α == saying that a
prefix of x;x is seen in the input string

Go from state 2 to state 1 consuming x

55CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α.

=> we are in some state s

56CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α.

=> we are in some state s.
We reduce by X->β if state s contains X->β

• Note: reduction is done based solely on the current
state.

57CS406, IIT Dharwad

LR(0) Parsing

• Assume: Parse stack contains α.
=> we are in some state s.

• Assume: Next input is t
We shift if s contains X->β tω

== s has a transition labelled t

58CS406, IIT Dharwad

LR(0) Parsing

• What if s contains X->β tω and X->β ?

59CS406, IIT Dharwad

S’->.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->int

S’->E.

E->T.
E->T.+E

T->int.*T
T->int.

T->int*.T
T->.(E)
T->.int*T
T->.int

E->T+.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

T->int*T.

T->(E.)

T->(E).

E->T+E.

T->(.E)
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

(

E

(

((

)

E

int

T

+

T

int

T
int

int

*

E

T

2

1

3

4

5

6

7

8

9

10

11

Conflicts or not?
60CS406, IIT Dharwad

SLR Parsing

• SLR Parsing improves the shift-reduce conflict states of
LR(0):

Reduce X->β only if

t ϵ Follow(X)

61CS406, IIT Dharwad

S’->.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->int

S’->E.

E->T.
E->T.+E

T->int.*T
T->int.

T->int*.T
T->.(E)
T->.int*T
T->.int

E->T+.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

T->int*T.

T->(E.)

T->(E).

E->T+E.

T->(.E)
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

(

E

(

((

)

E

int

T

+

T

int

T
int

int

*

E

T

2

1

3

4

5

6

7

8

9

10

11

Follow(E) = { $,) } => reduce by E->T. only if next input is $ or)

lookahead 1 62CS406, IIT Dharwad

E->.E+E
E->.id

E->id.

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)?

+

id

E->E+E.
E->E.+E

E

+3

4

5

63CS406, IIT Dharwad

E->.E+E
E->.id

E->id.

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

+

id

E->E+E.
E->E.+E

E

+3

4

5

64CS406, IIT Dharwad

E->.E+E
E->.id

E->id.

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

Follow(E) = {+,$} => in state 5, reduce by E->E+E. only if next input is $ or +

+

id

E->E+E.
E->E.+E

E

+3

4

5

65CS406, IIT Dharwad

E->.E+E
E->.id

E->id.

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

Follow(E) = {+,$} => in state 5, reduce by E->E+E. only if next input is $ or +

But state 5 has E->E.+E (shift if next input is +)
Shift-reduce conflict!

+

id

E->E+E.
E->E.+E

E

+3

4

5

66CS406, IIT Dharwad

E->.E+E
E->.id

E->id.

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

Follow(E) = {+,$} => in state 5, reduce by E->E+E. only if next input is $ or +

But state 5 has E->E.+E (shift if next input is +)
Shift-reduce conflict!

%left +
says reduce if the next input symbol is + i.e. prioritize rule E+E. over E.+E

+

id

E->E+E.
E->E.+E

E

+3

4

5

67CS406, IIT Dharwad

Discussion: LR and LL Parsers

• LR Parsers:
• For the next token, t, in input sequence, LR parsers try to answer:

i) should I put this token on stack? or ii) should I replace a set of
tokens that are at the top of a stack?

In shift states (case i), if there is no transition out of that state
for t, it is a syntax error.

• LL Parsers:
• LL parsers ask the question: which rule should I use next based on

the next input token t?. Only after expanding all non-terminals of
the rule considered, they move on to consume the subsequent
input tokens

68CS406, IIT Dharwad

Discussion: LR and LL Parsers

69

Grammar:
1: S -> F
2: S -> (S + F)
3: F -> a

input:
(a+)

Accepted or Not
accepted?

Parse Table (Top-Down)

CS406, IIT Dharwad

Discussion: LR and LL Parsers

70

Grammar:
1: S -> F
2: S -> (S + F)
3: F -> a

input:
(a+)

Accepted or Not
accepted?

Goto and Action Table?

CS406, IIT Dharwad

Hand-Written Parser - FPE

• Fully parenthesized expression (FPE)
• Expressions (algebraic notation) are the normal way we

are used to seeing them. E.g. 2 + 3

• Fully-parenthesized expressions are simpler versions:
every binary operation is enclosed in parenthesis

• E.g. 2 + 3 is written as (2+3)

• E.g. (2 + (3 * 7))

• We can ignore order-of-operations (PEMDAS rule) in FPEs.

71CS406, IIT Dharwad

• Either a:

1. A number (integer in our example) OR

2. Open parenthesis ‘(‘ followed by

FPE followed by

an operator (‘+’, ‘-’, ‘*’, ‘/’) followed by

FPE followed by

closed parenthesis ‘)’

FPE – definition

CS406, IIT Dharwad 72

1. E -> INTLITERAL

2. E -> (E op E)

3. op -> ADD | SUB | MUL | DIV

FPE – Notation

CS406, IIT Dharwad 73

1. One function defined for
every non-terminal
• E, op

2. One function defined for
every production
• E1, E2

3. One function defined for all
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad 74

1. One function defined for
every non-terminal
• E, op

2. One function defined for
every production
• E1, E2

3. One function defined for all
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad 75

bool IsTerm(Scanner* s, TOKEN tok) {

}

Implementing a parser for FPE

Assume that a scanner module has been provided.
The scanner has one function, GetNextToken, that
returns the next token in the sequence. Can be any one of: INTLITERAL, LPAREN,

RPAREN, ADD, SUB, MUL, DIV

This function checks if the next token returned by the scanner matches the expected
token. Returns true if match. false if no match.

return s->GetNextToken() == tok;

CS406, IIT Dharwad 76

1. One function defined for
every non-terminal
• E, op

2. One function defined for
every production
• E1, E2

3. One function defined for all
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad 77

bool E1(Scanner* s) {

return IsTerm(s, INTLITERAL);

}

Implementing a parser for FPE

This function implements production #1: E->INTLITERAL
Returns true if the next token returned by the scanner is an INTLITERAL. false
otherwise.

CS406, IIT Dharwad 78

1. One function defined for
every non-terminal
• E, op

2. One function defined for
every production
• E1, E2

3. One function defined for all
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad 79

1: bool E2(Scanner* s) {

2: return IsTerm(s, LPAREN) &&
E(s) &&
OP(s) &&
E(s) &&
IsTerm(s, RPAREN);

3: }

Implementing a parser for FPE

This function implements production #2: E->(E op E)
Returns true if the Boolean expression on line 2 returns true. false otherwise.

CS406, IIT Dharwad 80

1. One function defined for
every non-terminal
• E, op

2. One function defined for
every production
• E1, E2

3. One function defined for all
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad 81

bool OP(Scanner* s) {

TOKEN tok = s->GetNextToken();

if((tok == ADD) || (tok == SUB) || (tok ==
MUL) || (tok == DIV))

return true;

return false;

}

Implementing a parser for FPE

This function implements production #3: op->ADD|SUB|MUL|DIV
Returns true if the next token returned by the scanner is any one from ADD, SUB,
MUL, DIV. false otherwise.

CS406, IIT Dharwad 82

1. One function defined for
every non-terminal
• E, op

2. One function defined for
every production
• E1, E2

3. One function defined for all
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad 83

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

Assume that GetCurTokenSequence
returns a reference to the first token in
a sequence of tokens maintained by
the scanner

CS406, IIT Dharwad 84

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

//This line implements the check to see if the sequence of tokens match production #1:
E->INTLITERAL.CS406, IIT Dharwad 85

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

//because E1(s) calls s->GetNextToken() internally, the reference to the sequence of tokens
would have moved forward. This line restores the reference back to the first node in the
sequence so that the scanner provides the correct sequence to the call E2 in next lineCS406, IIT Dharwad 86

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

//This line implements the check to see if the sequence of tokens match production #2:
E->(E op E)

CS406, IIT Dharwad 87

IsTerm(Scanner* s, TOKEN tok) { return s->GetNextToken() == tok;}

bool E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

bool E2(Scanner* s) { return IsTerm(s, LPAREN) && E(s) && OP(s) && E(s) && IsTerm(s, RPAREN); }

bool OP(Scanner* s) {
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))

return true;
return false;

}

bool E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Start the parser by invoking E().
Value returned tells if the expression is FPE or not.

Implementing a parser for FPE

CS406, IIT Dharwad

88

Exercise

• What parsing technique does this parser use?

89CS406, IIT Dharwad

90
slide courtesy: Milind Kulkarni

CS406, IIT Dharwad

slide courtesy: Milind Kulkarni
91CS406, IIT Dharwad

Exercise

• https://forms.gle/gd8VwA9UyNaZiWKB8

92CS406, IIT Dharwad

Semantic Processing

Lexical Analysis

Parsing

Semantic Processing

Detects programs with illegal tokens

filter

filter

filter

93

Referred to as
“Front-end” Detects programs with ill-formed

programming constructs i.e. invalid
parse tree structure

Detects all remaining errors

CS406, IIT Dharwad

Semantic Processing

• Syntax-directed / syntax-driven
• Routines (called as semantic routines) interpret the meaning

of programming constructs based on the syntactic structure

• Routines play a dual role
• Analysis – Semantic analysis

• undefined vars, undefined types, uninitialized variables, type errors that
can be caught at compile time, unreachable code, etc.

• Synthesis – Generation of intermediate code
• 3 address code

• Routines create semantic records to aid the analysis and
synthesis

94CS406, IIT Dharwad

Semantic Processing

• Syntax-directed translation: notation for attaching
program fragments to grammar productions.

• Program fragments are executed when productions are
matched

• The combined execution of all program fragments produces
the translation of the program

e.g. E->E+T

Output: program fragments may create AST and 3 Address Codes

• Attributes: any ‘quality’ associated with a terminal and
non-terminal e.g. type, number of lines of a code, first line of
the code block etc.

95

{ print(‘+’) }

CS406, IIT Dharwad

Why Semantic Analysis?

• Context-free grammars cannot specify all
requirements of a language

• Identifiers declared before their use (scope)

• Types in an expression must be consistent

STRING str:= “Hello”;
str := str + 2;

• Number of formal and actual parameters of a function
must match

• Reserved keywords cannot be used as identifiers

• A Class is declared only once in a OO language, a
method of a class can be overridden.

• …

96CS406, IIT Dharwad

Abstract Syntax Tree

• Abstract Syntax Tree (AST) or Syntax Tree can be the
input for semantic analysis.

• What is Concrete Syntax Tree? – the parse tree

• ASTs are like parse trees but ignore certain details:

E.g. Consider the grammar:

E - > E + E

| (E)

| int

The parse tree for 1+(2+3)

97

E

E E

E()

E E+

int int

int

+

CS406, IIT Dharwad

AST - Example

• Not all details (nodes) of the parse tee are helpful
for semantic analysis

The parse tree for 1+(2+3) :

We need to compute the result of the expression. So,
a simpler structure is sufficient:

AST for 1+(2+3):

98

E

E E

E()

E E+

int int

int

+

+

1 +

2 3

Single child.
Can compress.

Expresses associativity.
Lower subtree in the
hierarchy can express.

CS406, IIT Dharwad

AST - Example

99

ASSIGN_OP

IDENTIFIER
(“foo”)

STRINGLITERAL
(“Hello World”)

≡

STRING foo := “Hello World” ;

parse tree

AST

CS406, IIT Dharwad

Semantic Analysis – Example

• Context-free grammars cannot specify all
requirements of a language

• Identifiers declared before their use (scope)

• Types in an expression must be consistent
Type checks
STRING str:= “Hello”;
str := str + 2;

• Number of formal and actual parameters of a function
must match

• Reserved keywords cannot be used as identifiers

• A Class is declared only once in a OO language, a
method can be overridden.

• …

100CS406, IIT Dharwad

Scope

• Goal: matching identifier declarations with uses

• Most languages require this!

• Scope confines the activity of an identifier

in different parts of the program:
• Same identifier may refer to different things
• Same identifier may not be accessible

101

ASSIGN_OP

IDENTIFIER
(“foo”)

STRINGLITERAL
(“hello world”)

What if foo is declared as
a STRING in an enclosing
scope but is an INT in the
current scope?

CS406, IIT Dharwad

Static Scope

• Most languages are statically scoped
• Scope depends on only the program text (not runtime

behavior)

• A variable refers to the closest defined instance

102

INT w, x;
{

FLOAT x, z;
f(x, w, z);

}
g(x)

x is a FLOAT here

x is an INT here

CS406, IIT Dharwad

Dynamic Scope

• In dynamically scoped languages
• Scope depends on the execution context

• A variable refers to the closest enclosing binding in the
execution of the program

103

f(){
a=4; g();

}
g() { print(a); }

value of a is 4 here

CS406, IIT Dharwad

Exercise: Static vs. Dynamic Scope

104

#define a (x+1) //macro definition

int x = 2; //global var definition

//function b definition
void b() {

int x = 1;
printf(“%d\n”,a);

}

//function c definition
void c() {

printf(“%d\n”,a);
}

//the main function
int main() { b(); c(); }

Is x statically scoped or dynamically
scoped?

CS406, IIT Dharwad

Symbol Table

• Data structure that tracks the bindings of identifiers.
Specifically, returns the current binding.

• E.g., stores a mapping of names to types
• Should provide for efficient retrieval and frequent insertion

and deletion of names.
• Should consider scopes

• Can use stacks, binary trees, hash maps for
implementation

105

{
int x = 0;
//accessing y here should be illegal
{

int y = 1;
}

}

CS406, IIT Dharwad

Symbol Table and Classes in OO
Language

• Class names may be used before their definition

• Can’t use symbol table (to check class definition)
• Gather all class names first.

• Check bindings next.

• Semantic analysis is done in multiple passes

• One of the goals of semantic analysis is to
create/update data structures that help the next round
of analysis

106

Implies going over the program text
multiple times

CS406, IIT Dharwad

Semantic Analysis – How?

• Recursive descent of AST
• Process a node, n

• Recurse into children of n and process them

• Finish processing the node, n

Do a postorder processing of the AST

• As you visit a node, you will add information depending
upon the analysis performed

• The information is referred to as attributes of the node

107CS406, IIT Dharwad

• Fully-Parenthesized Expressions (FPE)
• Can build while parsing via bottom-up building of the tree
• Create subtrees, make those subtrees left- and right-children

of a newly created root.
• Need to modify the hand-written recursive parser:

if:
token == INTLITERAL, return a reference to newly created node containing
a number

else:
store references to nodes that are left- and right- expression subtrees
Create a new node with value = ‘OP’

Building AST - Example

CS406, IIT Dharwad 108

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

Building AST - Example

This function creates an AST node and adds information that stores the value of an
INTLITERAL in the node. A reference to the AST node is returned.

CS406, IIT Dharwad 109

TreeNode* E1(Scanner* s) {

return IsTerm(s, INTLITERAL);

}

Building AST

E1 needs to change because IsTerm returns a TreeNode*.
E1 returns a TreeNode* now. Recall: E1 is the function that gets

called when predicting using the
production: E -> INTLITERAL

CS406, IIT Dharwad 110

• Fully-Parenthesized Expressions (FPE)
• Can build while parsing via bottom-up building of the tree
• Create subtrees, make those subtrees left- and right-children

of a newly created root.
• Need to modify the hand-written recursive parser:

if:
token == INTLITERAL, return a reference to newly created node containing
a number

else:
store references to nodes that are left- and right- expression subtrees
Create a new node with value = ‘OP’

Building AST - Example

CS406, IIT Dharwad 111

TreeNode* OP(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok ==

MUL) || (tok == DIV))
ret = CreateTreeNode(tok.val);

return ret;
}

Building AST

This function creates an AST node and adds information that stores the value of an
op in the node. A reference to the AST node is returned.

Recall: op is the function that gets called
when predicting using the production:
op -> ADD | SUB | MUL | DIV

CS406, IIT Dharwad
112

TreeNode* E2(Scanner* s, TOKEN tok) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s); if(!left) return NULL;
TreeNode* root = OP(s); if(!root) return NULL;
TreeNode* right = E(s); if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root;

}

Building AST

This function sets the references to left- and right- expression subtrees if those
subtrees are valid FPEs. Returns reference to the AST node corresponding to the op
value, NULL otherwise. Recall: E2 is the function that gets

called when predicting using the
production: E -> (E op E)

CS406, IIT Dharwad
113

TreeNode* E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

Building AST

E needs to change because E1, E2, and OP return a TreeNode*.
E returns a TreeNode* now.

Recall: E is the higher-level function for a non-terminal that gets
called when predicting using either of the productions for E:
E -> (E op E) | INTLITERAL

CS406, IIT Dharwad
114

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root;

}

Building AST

CS406, IIT Dharwad
115

TreeNode* OP(Scanner* s) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))

ret = CreateTreeNode(tok.val);
return ret;

}

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

Building AST

Start the parser by invoking E().
Value returned is the root of the AST.

CS406, IIT Dharwad
116

Exercise

• Did we build the AST bottom-up or top-down?

117CS406, IIT Dharwad

