CS406: Compilers

Spring 2022

Week 5: Parsers — Bottom-up Parsing (background
concepts), Bottom-up parsing (use of goto and action
tables)

Concept: configuration / item

» Configuration or item has a form:
A -> X;ooo X X;

i @ i+l e j
> Dot ecan appear anywhere

» Represents a production part of which has been matched
(what is to the left of Dot)

» LR parsers keep track of multiple (all) productions that can
be potentially matched

» We need a configuration set

Concept: configuration / item

: . Corresponding to productions:
»E.g,. configuration set ponding to p

stmt -> ID := expr
stmt -> ID°® := expr stmt -> ID : stmt
stmt -> ID
stmt -> IDe : stmt
stmt -> IDe

» Dot at the extreme left of RHS of a production denotes that
production is predicted

» Dot at the extreme right of RHS of a production denotes
that production is recognized

»if Dot precedes a Non-Terminal in a configuration set, more
configurations need to be added to the set

Concept: closure

» For each configuration in the configuration set,

A -> aeBy, where B is a non-terminal,

1 add configurations of the form:
B ->¢ 6
2 if the addition introduces a configuration with Dot

behind a new non-Terminal N, add all configurations having
the form N ->e ¢

Repeat 2 when another new non-terminal is
introduced and so on..

Concept: closure

Grammar
S -> E$
»E.g.closure {S ->°E$} E -> E+T | T
[} ,_— Non-terminal T -> ID | (E)

S ->eE$

Concept: closure

Grammar
S -> E$
>E.g. closure {S ->°E$} E -> E+T | T
{1, — Non-terminal T -> ID | (E)

S ->eE$
E ->eE+T

Concept: closure

Grammar
S -> E$
»E.g.closure {S ->°E$} E -> E+T | T
@/Non—terminal T ->1ID | (E)
S ->eE$
E ->eE+T

E ->eT

Concept: closure

Grammar
S -> E$
>E.g. closure {S -> E$} E -> E+T | T
3 T -> ID | (E)

S ->eE$

E ->eE+T New Non-terminal
E ->eT+

Concept: closure

Grammar
S -> E$
»>E.g. closure {S ->°E$} E -> E+T | T
Iyl T -> ID | (E)
S ->eE$
E ->eE+T New Non-terminal
E ->eT+

T ->eID

Concept: closure

Grammar
S -> E$
»>E.g. closure {S ->°E$} E -> E+T | T
0 T -> ID | (E)

S ->eE$

E ->eE+T New Non-terminal

E ->eT+

T ->eID

T ->(E)

10

Concept: closure

»E.g.closure {S ->eE$}
_ U _

->eE$
->eE+T
->oT -
->eID
_>0(E)

A
—A 4 mmwn

Grammar
S -> E$
E -> E+T | T
T -> ID | (E)

11

Concept: SUCCeSsSSOor

Grammar
S -> E$
»E.g. successor ({S ->eE$}, E) E -> E+T | T
% T -> ID | (E)
S ->eE$ |
E ->eE+T g S ~> Ee$
_ E ->eT - — |E -> Ee+T
T ->eID
T ->o(E) i

—

» Consider all symbols that are to the immediate right of Dot
and compute respective successors

» You must compute closure of successor before finalizing items in
successor

12

Concept: CFSM

»Each configuration set becomes a state

»The symbol used as input for computing the
successor becomes the transition

» Configuration-set finite state machine (CFSM)

» The state diagram obtained after computing the chain of
all successors (for all symbols) starting from the
configuration involving the first production

13

Example: CFSM

Start with a configuration for the first production

P->¢S

Grammar

P->S
S->X3;S
S->e

14

Example: CFSM

Compute closure

P_Se S+ Non-terminal

Grammar

P->S
S->X3;S
S->e

15

Add item

P->¢S
S->x;S

Example: CFSM

Grammar

P->S
S->X3;S
S->e

16

Example: CFSM

Grammar
Add item P->S
P->eS S->X;5
S->x;S S->e

S->e e

17

Example: CFSM

Grammar
No new non-terminal before Dot. This becomes a state in CFSM p-3>S
P->eS S=>X;5
S->x;5S S->e
S->ee
state O

18

Example: CFSM

Grammar
Compute successor (of state 0) under symbol x P->S
P->eS S=>X;5
S->0X;S X . S->e
S->ee
state O

Consider items (in state 0), where x is to the immediate right of Dot.
Advance Dot by one symbol.

19

Example: CFSM

Grammar
Compute successor (of state 0) under symbol x P->S
P->eS S=>X;5
S->¢x;S X L, |S->xe;S S->e
S->ee
state O

Consider items (in state 0), where x is to the immediate right of Dot.
Advance Dot by one symbol.

20

Example: CFSM

Grammar
Compute successor (of state 0) under symbol x P->S
P->eS S=>X;5
S->¢x;S X L, |S->xe;S S->e
S->e state 1
state O

Consider items (in state 0), where x is to the immediate right of Dot.
Advance Dot by one symbol.

No non-terminals immediately after Dot in the successor. So, no

configurations get added. Successor becomes another state in
CFSM.

21

Example: CFSM

Grammar
Compute successor (of state 1) under symbol ; P->S
P->eS _ S=>X;5
S->¢x;S X L, |S->xe;S BN S->e
S->e state 1
state O

Consider items (in state 1), where ; is to the immediate right of Dot.
Advance Dot by one symbol.

22

Example: CFSM

Compute successor (of state 1) under symbol ;

Grammar

P->e¢S

S->ex;S X ,|S->Xe;S

S->ee state 1
state O

Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.

v

S->X;eS

P->S
S->X3;S
S->e

23

Example: CFSM

Grammar
Compute successor (of state 1) under symbol ; P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->ee state 1
state O

Consider items (in state 1), where ; is to the immediate right of Dot.
Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of
state 1. So, add configurations.

24

Example: CFSM

Grammar
Compute successor (of state 1) under symbol ; P->S
P->eS _ S=>X;5
S->¢x;S X L, |S->xe;S | S->X;eS S->e
S->ee state 1 S'>.X;S
state O

Consider items (in state 1), where ; is to the immediate right of Dot.
Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of
state 1. So, add configurations.

25

Example: CFSM

Grammar
Compute successor (of state 1) under symbol ; P->S
P->eS _ S->X;5
S->¢x;S X L, |S->xe;S | S->X;eS S->e
S->ee state 1 S'>.X;S
state 0 S->ee

Consider items (in state 1), where ; is to the immediate right of Dot.
Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of
state 1. So, add configurations.

26

Example: CFSM

Grammar
Compute successor (of state 1) under symbol ; P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->ee state 1 S'>.X;S
state 0 S->ee

state 2
Consider items (in state 1), where ; is to the immediate right of Dot.

Advance Dot by one symbol.
There is a non-terminal immediately after Dot in the successor of

state 1. So, add configurations. No more items to be added.
Becomes another state in CFSM.

27

Example: CFSM

Grammar
Compute successor (of state 2) under symbol e P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->ee state 1 S'>.X;S
state 0 S->ee

/ state 2

Consider items (in state 2), where e is to the immediate right of Dot.
Advance Dot by one symbol.

28

Example: CFSM

Grammar
Compute successor (of state 2) under symbol e P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->ee state 1 S'>.X;S
state 0 S->ee

/ state 2
S->ee

Consider items (in state 2), where e is to the immediate right of Dot.
Advance Dot by one symbol.

29

Example: CFSM

Compute successor (of state 2) under symbol e
P->eS _

S->0X;S X, S->Xe;S —| S->X;eS
S->ee state 1 S->ex;S
state 0 S->ee

/ state 2
S->ee
state 3

Consider items (in state 2), where e is to the immediate right of Dot.

Advance Dot by one symbol. No more items to be added. Becomes
another state in CFSM.

Grammar

P->S
S->X3;S
S->e

30

Example: CFSM

Grammar
Compute successor (of state 2) under symbol x P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->ee state 1 S->ex;S
state 0 S->ee
/ state 2
S->ee
state 3

Consider items (in state 2), where x is to the immediate right of Dot.
Advance Dot by one symbol.

31

Example: CFSM

Grammar
Compute successor (of state 2) under symbol x P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S
state 0 S->ee
/ state 2
S->ee
state 3

Consider items (in state 2), where x is to the immediate right of Dot.
Advance Dot by one symbol.

32

Example: CFSM

Grammar
Compute successor (of state 2) under symbol S P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state O S->ee .
/ state 2
S->ee
state 3

Consider items (in state 2), where S is to the immediate right of Dot.
Advance Dot by one symbol.

33

Example: CFSM

Grammar
Compute successor (of state 2) under symbol S P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state 0 5->ee > S->X;Se
/ state 2
S->ee
state 3

Consider items (in state 2), where S is to the immediate right of Dot.
Advance Dot by one symbol.

34

Example: CFSM

Grammar
Compute successor (of state 2) under symbol S P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state 0 5->ee > S->X;Se
e state 2
state 4
S->ee
state 3

Consider items (in state 2), where S is to the immediate right of Dot.

Advance Dot by one symbol. No more items to be added. Becomes
another state in CFSM.

35

Example: CFSM

Grammar
Compute successor (of state 0) under symbol e P->S
P->eS _ S=>X;5
S->eXx;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state 0 5->ee > S->X;Se
e state 2
state 4
S->ee
state 3

Consider items (in state 0), where e is to the immediate right of Dot.
Advance Dot by one symbol.

36

Example: CFSM

Grammar
Compute successor (of state 0) under symbol e P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state 0 e 5->ee > S->X;Se
e state 2
state 4
S->ee
state 3

Consider items (in state 0), where e is to the immediate right of Dot.
Advance Dot by one symbol.

37

Example: CFSM

Grammar
Compute successor (of state 0) under symbol S P->S
P->eS _ S=>X;5
S->eXx;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state 0 e 5->ee > S->X;Se
state 2
> / state 4
S->ee
state 3

Consider items (in state 0), where S is to the immediate right of Dot.
Advance Dot by one symbol.

38

Example: CFSM

Grammar
Compute successor (of state 0) under symbol S P->S
P->eS _ S=>X;5
S->ex;S X ,|S->Xe;S . S->x;eS S->e
S->e e state 1 X S'>.X;S S
state 0 e 5->ee > S->X;Se
state 2
> / state 4
S->ee
P->5Se state 3

Consider items (in state 0), where S is to the immediate right of Dot.
Advance Dot by one symbol.

39

Example: CFSM

Compute successor (of state 0) under symbol S

Grammar
P->S
S->X;S
S->e

P->eS _
S->x;S X . S->Xe;S —> S->X;eS
S->epe state 1 X S'>.X;S
state 0 e S->ee
S / state 2
S->ee
P->Se state 3
state 5

Consider items (in state 0), where S is to the immediate right of Dot.
Advance Dot by one symbol. Cannot expand CFSM anymore.

\4

S->X;Se

state 4

40

Example: CFSM

 All states with Dot at extreme right become reduce states

P->eS

S->e e

S->Xx;S

state O

S

P->Se

state 5

v

S->Xe;S » S->X;eS
state 1 o | 27>°%55
S->ee
/ state 2
S->ee
state 3

v

S->X;Se

State 4

41

Example: CFSM

« All states with Dot at extreme right become reduce states

Grammar
Reduce 3 1) P->S
2) S->x;S
P->eS | 3) S->e
S->x;S X, S->Xe;S —| S->X;eS
S->epe state 1 S'>.X;S
state 0 c X S->ee S Joosx:
» S->X;Se
t
S / state 2 state 4
S->ee
P->Se state 3

state 5

42

Example: CFSM

« All states with Dot at extreme right become reduce states

Grammar
Reduce 2 1) P->S
2) S->X;S
P->eS | 3) S->e
S->x;S X, S->Xe;S —| S->X;eS
S->epe state 1 S'>.X;S
state 0 c X S->ee S ooy
» S->X;Se
t
S / state 2 state 4
S->ee
P->Se state 3

state 5

43

Example: CFSM

« All states with Dot at extreme right become reduce states

Grammar
Accept 1) P->S
2) S->x;S
P->eS | 3) S->e
S->x;S X, S->Xe;S —| S->X;eS
S->epe state 1 S'>.X;S
state 0 c X S->ee S Joosx:
» S->X;Se
tat
S / state 2 state 4
S->ee
P->Se state 3

state 5

44

Example: CFSM

* Remaining states become shift states

P->eS

S->e e

S->Xx;S

state O

S

P->Se

state 5

v

Grammar

1) P->S
2) S->x;S
3) S->e

S->Xe;S BN S->X;eS
state 1 o |27>%55
S->ee
/ state 2
S->ee
state 3

v

S->X;Se

State 4

45

Conflicts

 What happens when a state has Dot at the extreme right
for one item and in the middle for other items?

Shift-reduce conflict
Parser is unable to decide between shifting and reducing

 When Dot is at the extreme right for more than one items?

Reduce-Reduce conflict
Parser is unable to decide between which productions to choose for
reducing

46

Example: goto table

P->eS _
S->x;S X, S->Xe;S — S->X;eS
S->e¢e state 1 y S->ex;S <
state O e S->ee » S->X;Se
Sstate 2
S / Sstate 4
S->ee
P->Se state 3
state 5

e construct transition table from CFSM.
« Number of rows = number of states
* Number of columns = number of symbols

Example: goto table

P->eS
S->0X;S —2+|S->Xe;S > S->X;e S
S->e e state 1 « S->ex;S
state 0 e S->ee S » S->X;Se
S S—>eo/ state 2 state 4
P->Se state 3
state 5
state X ; e P S
0 1 3 5
1 2
2 1 3 4
3
4
5

CS406, IIT Dharwad

Example: action table

P->eS
S->¢x;S X L |S->xe;S > S->x;eS
S->e e state 1 y S->ex;S
state 0 e S->ee SEN S->X;Se
S / state 2 state 4
S->ee
P->Se state 3
state 5
state X
0 Shift
1 Shift
2 Shift
3 Reduce 3
4 Reduce 2
5 Accept

Example: action table

P->eS _
S->x;S X, S->Xe;S — S->X;eS
S->ee state 1 « S->ex;S
state O e S->ee SEN S->X;Se
State 2
S S->e % state 4
- [)
P->Se state 3
State 5
Symbol
X : e P S Action
0 | 3 5 Shift
| pi Shift
2 | 3 4 Shift
State
3 Reduce 3
- Reduce 2
5 Accept

CS406, IIT Dharwad

LR(O) Parsing

* Previous Example of LR Parsing was LR(0)
* No (0) lookahead involved

* Operate based on the parse stack state and with goto
and action tables (How?)

LR(O) Parsing

* Assume: Parse stack contains a == saying that a e.g.
prefix of X;X is seenin the input string

Parse Stack

0

01

P->e5S
S->-x;S-___5__+

S->ee

012

0121

/

state 0 e
S

P->Se
state 5

S->Xe;S

state 1

IR
\\Mﬁ_ﬁﬁ

S->X;eS
S->ex;5S
S->ee

S
S->€ee

state 3

state 2

» S->X;Se

state 4

* Assume: Parse stack contains a == saying that a

LR(O) Parsing

prefix of X;X is seenin the input string

Parse Stack

0

01

P->eS
S->X;S
S->ee

—_— e

S->Xe;S

—

012

0121

/

state 0

e

P->Se

state 5

Go from state O to state 1 consuming x

state 1

IR
Q/

S->X;eS
S->ex;5S
S->ee

S
S->€ee

state 3

state 2

» S->X;Se

state 4

LR(O) Parsing

* Assume: Parse stack contains a == saying that a
prefix of X;X is seenin the input string

Parse Stack P->e5S « .
0 S->eX;SI— = ,|S->Xe;S— = —S->X;eS

g a
01 \\\ii«f'5—>-e S JS->x:Se
o 2

012 state 0 e
S / state 2 State 4
S->€ee

0121

/ P->Se state 3
state 5

Go from state 1 to state 2 consuming ;

* Assume: Parse stack contains a == saying that a

LR(O) Parsing

prefix of X;X is seenin the input string

Parse Stack

0

01

P->eS
S->X;S
S->ee

X

—_—

012

0121

/

state 0

e

P->Se

state 5

Go from state 2 to state 1 consuming x

S->Xe;S

7
—

state 1

NN

~
—

S->X;eS
S->ex;5S
S->ee

S
S->€ee

state 3

state 2

» S->X;Se

state 4

LR(O) Parsing

* Assume: Parse stack contains a.

=> we are in some state s

LR(O) Parsing

e Assume: Parse stack contains a.

=> we are in some state s.
We reduce by X->f if state s contains X->p®

* Note: reduction is done based solely on the current
state.

LR(O) Parsing

* Assume: Parse stack contains a.
=> we are in some state s.

* Assume: Next inputist

We shift if s contains X->3 @ tw

== s has a transition labelled t

LR(O) Parsing

* What if s contains X->p @ tw and X->Be ?

.

A 4

2 E->T.
S’ _SE. E->T.+E

///////////’ :
E 1 T->int.*T
S’->.E int T->int.
E->.T lint
E->.T+E T->int*.T
T->.(E) T->.(E)
T->.1int*T T->.1int*T
T->int T->.int

5

Conflicts or not?

SLR Parsing

* SLR Parsing improves the shift-reduce conflict states of
LR(O):

Reduce X->B e only if
t € Follow(X)

/E—>T+.E > E->T+E.
3, E->.T

2 E->T. E->.T
S’ ->E. T E->T.+E T->.(

4 T->.1
i /////I/////) T->int.*T T->.
S?->.E int'T->int. D
E->.T lint
E->.T+E T->int*.T
T->.(E) T->.(E)
T->.1nt*T T->.1nt*T
T->int T->.int
5

Follow(E) = { $,) } =>reducebyE->T.onlyif nextinputis$ or)
lookahead 1

E->id. ; ;:////l ‘\\:\\\\\E->E+E.
i E->E.+E

1 g nE->E.+E
E->.E+E /

E->.id

What about the grammar E-> E + E | id ?

LR(9)?

E->id. ; ;:////l ‘\\:\\\\\E->E+E.
i E->E.+E

1 g nE->E.+E
E—>.E+E//////,

E->.id

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

E->id. ; ;:////l ‘\\:\\\\\E->E+E.

id E->E.+E
1 g A E->E.+E

E->.E+E /

E->.id

What about the grammar E-> E + E | id ?
LR(®)? SLR(1)?

Follow(E) = {+,%$} => in state 5, reduce by E->E+E. only if next input is $ or +

" E->.E+E -

2 E->.id \ s
E->1d. ; ;:////l ‘\\:\\\\\E—>E+E.
d E->E.+E

1 g A E->E.+E
E—>.E+E//////,

E->.id

What about the grammar E-> E + E | id ?

LR(Q)? SLR(1)?

Follow(E) = {+,%$} => in state 5, reduce by E->E+E. only if next inputis $ or +

But state 5 has E->E.+E (shift if next input is +)
Shift-reduce conflict!

" E->.E+E -

2 E->.id \ .
E->1d. ; ;:////l ‘\\:\\\\\E—>E+E.
d E->E.+E

1 g A E->E.+E
E—>.E+E//////,

E->.id

What about the grammar E-> E + E | id ?
LR(@)? SLR(1)?

Follow(E) = {+,%$} => in state 5, reduce by E->E+E. only if next inputis $ or +

But state 5 has E->E.+E (shift if next input is +)

Shift-reduce conflict!
%left +

says:reduce if the next input symbol is + i.e. prioritize rule E+E. over E.+E

Discussion: LR and LL Parsers

LR Parsers:

* For the next token, t, in input sequence, LR parsers try to answer:

i) should | put this token on stack? or ii) should | replace a set of
tokens that are at the top of a stack?

In shift states (case i), if there is no transition out of that state
for t, it is a syntax error.

* LL Parsers:
e LL parsers ask the question: which rule should | use next based on
the next input token t?. Only after expanding all non-terminals of
the rule considered, they move on to consume the subsequent

input tokens

CS406, IIT Dharwad

68

Discussion

Grammar:

1: S -> F

2: S -> (S + F)
3: F -> a

input:

(a+)

Accepted or Not
accepted?

- LR and LL Parsers

Parse Table (Top-Down)

Discussion

Grammar:

1: S -> F

2: S -> (S + F)
3: F -> a

input:

(a+)

Accepted or Not
accepted?

- LR and LL Parsers

Goto and Action Table?

Hand-Written Parser - FPE

 Fully parenthesized expression (FPE)

* Expressions (algebraic notation) are the normal way we
are used to seeing them.E.g. 2 + 3

* Fully-parenthesized expressions are simpler versions:
every binary operation is enclosed in parenthesis

e E.g.2+3iswritten as (2+3)
¢ Eg.(2+(3*%7)

 We can ignore order-of-operations (PEMDAS rule) in FPEs.

71

FPE — definition

 Either a:

1. Anumber (integer in our example) OR

2. Open parenthesis ('
FPE
an operator (‘+, -, "', /")
FPE

closed parenthesis ‘)

CS406, IIT Dharwad

followed by
followed by
followed by
followed by

72

FPE — Notation

1.E -> INTLITERAL
2.E -> (E op E)
3.0p -> ADD | SUB | MUL | DIV

Implementing a parser for FPE

1. One function defined for 1.E -> INTLITERAL

every non-terminal 2.E -> (E op E)

 E, op 3.0p -> ADD | SUB | MUL | DIV
2. One function defined for

every production

e E1, E2
3. One function defined for all

terminals
e TIsTerm

Implementing a parser for FPE

1. One function defined for 1.E -> INTLITERAL

every non-terminal 2.E -> (E op E)

 E, op 3.0p -> ADD | SUB | MUL | DIV
2. One function defined for

every production

e E1, E2
3. One function defined for all

terminals
e TIsTerm

Implementing a parser for FPE

This function checks if the next token returned by the scanner matches the expected
token. Returns true if match. false if no match.

Assume that a scanner module has been provided.
The scanner has one function, GetNextToken, that

returns the next token in the sequence. Can be any one of: INTLITERAL, LPAREN,

\ RPAREN, ADD, SUB, MUL, DIV

bool IsTerm(Scanner* s, TOKEN tok) {

return s->GetNextToken() == tok;

CS406, IIT Dharwad 76

Implementing a parser for FPE

1. One function defined for 1.E -> INTLITERAL

every non-terminal 2.E -> (E op E)

 E, op 3.0p -> ADD | SUB | MUL | DIV
2. One function defined for

every production

e E1, E2
3. One function defined for all

terminals
e TIsTerm

Implementing a parser for FPE

This function implements production #1: E->INTLITERAL
Returns true if the next token returned by the scanner is an INTLITERAL. false
otherwise.

bool E1(Scanner* s) {

return IsTerm(s, INTLITERAL);

Implementing a parser for FPE

1. One function defined for 1.E -> INTLITERAL

every non-terminal 2.E -> (E op E)

 E, op 3.0p -> ADD | SUB | MUL | DIV
2. One function defined for

every production

e E1, E2
3. One function defined for all

terminals
e TIsTerm

Implementing a parser for FPE

This function implements production #2: E->(E op E)
Returns true if the Boolean expression on line 2 returns true. false otherwise.

bool E2(Scanner* s) {

return IsTerm(s, LPAREN) &&

E(s) &&
OP(s) &&
E(s) &&

IsTerm(s, RPAREN);

Implementing a parser for FPE

1. One function defined for 1.E -> INTLITERAL

every non-terminal 2.E -> (E op E)

 E, op 3.0p -> ADD | SUB | MUL | DIV
2. One function defined for

every production

e E1, E2
3. One function defined for all

terminals
e TIsTerm

Implementing a parser for FPE

This function implements production #3: op->ADD | SUB |[MUL | DIV

Returns true if the next token returned by the scanner is any one from ADD, SUB,
MUL, DIV. false otherwise.

bool OP(Scanner* s) {

TOKEN tok = s->GetNextToken();

if((tok == ADD) || (tok == SUB) || (tok ==
MUL) || (tok == DIV))
return true;

return false;

Implementing a parser for FPE

1. One function defined for 1.E -> INTLITERAL

every non-terminal 2.E -> (E op E)

e E, op 3.0p -> ADD | SUB | MUL | DIV
2. One function defined for

every production

e E1, E2
3. One function defined for all

terminals
e TIsTerm

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

Assume that GetCurTokenSequence
returns a reference to the first token in

bool E(Scanner* s) { a sequence of tokens maintained by
the scanner

TOKEN* prevToken = s->GetCurTokenSequence();
if(1E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

¥

return true;

¥

CS406, IIT Dharwad 84

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

¥

return true;

//This line implements the check to see if the sequence of tokens match production #1:
E->INTLITERAL.

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();

if(!'E1(s)) {
s->SetCurTokenSequence(prevToken);
return E2(s);

¥

return true;

//because E1(s) calls s->GetNextToken() internally, the reference to the sequence of tokens
would have moved forward. This line restores the reference back to the first node in the
sequence so that the scanner provides the correct sequence to the call E2 in next line

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

bool E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
if(1E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

¥

return true;

//This line implements the check to see if the sequence of tokens match production #2:
E->(E op E)

Implementing a parser for FPE

IsTerm(Scanner* s, TOKEN tok) { return s->GetNextToken() == tok;}

bool E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

bool E2(Scanner* s) { return IsTerm(s, LPAREN) && E(s) && OP(s) && E(s) && IsTerm(s, RPAREN); }

bool OP(Scanner* s) {
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))
return true;
return false;

}

bool E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

if('E1(s)) {
s->SetCurTokenSequence(prevToken);
return E2(s);

}

return true;

}

Start the parser by invoking E().
Value returned tells if the expression is FPE or not.

Exercise

* What parsing technique does this parser use?

LR(k) parsers

® | R(0) parsers
® No lookahead

® Predict which action to take by looking only at the
symbols currently on the stack

® [R(k) parsers
® (Can look ahead k symbols
® Most powerful class of deterministic bottom-up parsers

® | R(Il) and variants are the most common parsers

CS406, IIT Dharwad

90

Top-down vs. Bottom-up parsers

® Top-down parsers expand the parse tree in pre-order
® |dentify parent nodes before the children

® Bottom-up parsers expand the parse tree in post-order
® |dentify children before the parents

® Notation:
® |L(l):Top-down derivation with | symbol lookahead
® || (k):Top-down derivation with k symbols lookahead

® |R(I): Bottom-up derivation with | symbol lookahead

CS406, IIT Dharwad

91

Exercise

* https://forms.gle/gd8VwA9UyNazZiWKBS8

Semantic Processing

Lexical Analysis

“filter

Parsing

“filter

, Detects programs with illegal tokens

Referred to as
“Front-end”

—> programming constructs i.e. invalid

Detects programs with ill-formed
parse tree structure

Semantic Processing—» Detects all remaining errors

|| filter

Semantic Processing

 Syntax-directed / syntax-driven

e Routines (called as semantic routines) interpret the meaning
of programming constructs based on the syntactic structure

* Routines play a dual role

* Analysis — Semantic analysis

* undefined vars, undefined types, uninitialized variables, type errors that
can be caught at compile time, unreachable code, etc.

e Synthesis — Generation of intermediate code
* 3 address code

* Routines create semantic records to aid the analysis and
synthesis

Semantic Processing

* Syntax-directed translation: notation for attaching
program fragments to grammar productions.

* Program fragments are executed when productions are
matched

* The combined execution of all program fragments produces
the translation of the program

e.g. E->E+T { print(‘+’) }
Output: program fragments may create AST and 3 Address Codes

e Attributes: any ‘quality’ associated with a terminal and

non-terminal e.g. type, number of lines of a code, first line of
the code block etc.

Why Semantic Analysis?

* Context-free grammars cannot specify all
requirements of a language
e |dentifiers declared before their use (scope)

* Types in an expression must be consistent

STRING str:= “Hello”;
str:=str + 2;
e Number of formal and actual parameters of a function
must match

e Reserved keywords cannot be used as identifiers

* A Class is declared only once in a OO language, a
method of a class can be overridden.

Abstract Syntax Tree

e Abstract Syntax Tree (AST) or Syntax Tree can be the
input for semantic analysis.
 What is Concrete Syntax Tree? — the parse tree

» ASTs are like parse trees but ignore certain details:

E.g. Consider the grammar:

E->E+E E/F\E
+
| (E) i /|E\)
|int (/|\
E + E

The parse tree for 1+(2+3) | |
int int

AST - Example

* Not all details (nodes) of the parse tee are helpful
for semantic analysis E

AN
The parse tree for 1+(2+3) : +/ F\ Expresses associativity.
(E) , Lower subtree in the

AR hierarchy can express.

+
«<—Single child.
Can compress.

We need to compute the result of the expression. So,
a simpler structure is sufficient:

AST for 1+(2+3) : VAR

1 +
RN
2 3

AST - Example

parse tree string_decl

STRING foo := “Hello World” ; E> “/// \\

STRING id ASSIGN_OP str SEMICOLON

4 \

IDENTIFIER (“foo”) STRINGLITERAL (“Hello World™)
= AST @

ASSIGN_OP
/N
IDENTIFIER STRINGLITERAL
(“foo™) (“Hello World”)

CS406, IIT Dharwad 99

Semantic Analysis — Example

e |dentifiers declared before their use (scope)

Scope

* Goal: matching identifier declarations with uses
* Most languages require this!

* Scope confines the activity of an identifier
ASSIGN_OP What if foo is declared as

VAN . .
IDENTIEIER STRINGLITERAL <j a STRING in an enclosing

cc % “hello world” scope but is an INT in the
(“foo™) () current scope?

in different parts of the program:
* Same identifier may refer to different things
* Same identifier may not be accessible

Static Scope

* Most languages are statically scoped

* Scope depends on only the program text (not runtime
behavior)

e A variable refers to the closest defined instance

INT w, X;
{
FLOAT x, z;
f(x, w, z);
} x is a FLOAT here
g(x)

T~ xisan INT here

Dynamic Scope

* In dynamically scoped languages
e Scope depends on the execution context

e A variable refers to the closest enclosing binding in the
execution of the program

F(OA
a=4; g();
}

g() { pr%nt(a); }

value of ais 4 here

Exercise: Static vs. Dynamic Scope

#define a (x+1) //macro definition

, ——— Is x statically scoped or dynamically
int x = 2; //global var definition scoped?

//function b definition
void b() {
int x = 1;
printf(“%d\n”,a);
}

//function c definition
void c() {
printf(“%d\n”,a);

}

//the main function
int main() { b(); c(); }

Symbol Table

e Data structure that tracks the bindings of identifiers.
Specifically, returns the current binding.
e E.g., stores a mapping of names to types

* Should provide for efficient retrieval and frequent insertion
and deletion of names.

» Should consider scopes

{
int x = 0;
//accessing y here should be illegal
{
int y = 1;
}
}

* Can use stacks, binary trees, hash maps for
implementation

Symbol Table and Classes in OO
Language

* Class names may be used before their definition

e Can’t use symbol table (to check class definition)

* Gather all class names first. <::I Implies going over the program text
* Check bindings next. multiple times

* Semantic analysis is done in multiple passes

* One of the goals of semantic analysis is to
create/update data structures that help the next round
of analysis

Semantic Analysis — How?

* Recursive descent of AST
* Process a node, n
* Recurse into children of n and process them
 Finish processing the node, n

—>Do a postorder processing of the AST

* As you visit a node, you will add information depending
upon the analysis performed

 The information is referred to as attributes of the node

Building AST - Example

* Fully-Parenthesized Expressions (FPE)
* Can build while parsing via bottom-up building of the tree
* Create subtrees, make those subtrees left- and right-children
of a newly created root.

* Need to modify the hand-written recursive parser:

if:
» token == INTLITERAL, return a reference to newly created node containing

a number

else:

store references to nodes that are left- and right- expression subtrees
Create a new node with value = ‘OP’

Building AST - Example

This function creates an AST node and adds information that stores the value of an
INTLITERAL in the node. A reference to the AST node is returned.

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)
ret = CreateTreeNode(nxtToken.val);
return ret;

Building AST

E1 needs to change because IsTerm returns a TreeNode*.
E1 returns a TreeNode* now. Recall: E1 is the function that gets

called when predicting using the
production: E -> INTLITERAL

TreeNode* E1(Scanner* s) {

return IsTerm(s, INTLITERAL);

Building AST - Example

* Fully-Parenthesized Expressions (FPE)
* Can build while parsing via bottom-up building of the tree
* Create subtrees, make those subtrees left- and right-children
of a newly created root.

* Need to modify the hand-written recursive parser:
if:
token == INTLITERAL, return a reference to newly created node containing
a number

else:

» store references to nodes that are left- and right- expression subtrees
Create a new node with value = ‘OP’

Building AST

This function creates an AST node and adds information that stores the value of an
op in the node. A reference to the AST node is returned.

Recall: op is the function that gets called
when predicting using the production:
op -> ADD | SUB | MUL | DIV

TreeNode* OP(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok ==
MUL) || (tok == DIV))
ret = CreateTreeNode(tok.val);
return ret;

Building AST

This function sets the references to left- and right- expression subtrees if those

subtrees are valid FPEs. Returns reference to the AST node corresponding to the op

value, NULL otherwise. Recall: E2 is the function that gets

called when predicting using the
TreeNode* E2(Scanner* s, TOKEN tok) { production: E -> (E op E)

TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s); if(!left) return NULL;

TreeNode* root = OP(s); if(!root) return NULL;

TreeNode* right = E(s); if(!right) return NULL;

nxtTok = s->GetNextToken();

if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root;

Building AST

E needs to change because E1, E2, and OP return a TreeNode*.
E returns a TreeNode* now.

Recall: E is the higher-level function for a non-terminal that gets

called when predicting using either of the productions for E:
E -> (E op E) | INTLITERAL

TreeNode* E(Scanner* s) {

TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);

if(!'ret) {
s->SetCurTokenSequence(prevToken);
ret = E2(s);

}

return ret;

Building AST

TreeNode* IsTerm(Scanner* s, TOKEN tok) {

TreeNode* ret = NULL;
s->GetNextToken();
if(nxtToken == tok)

TOKEN nxtToken =

ret = CreateTreeNode(nxtToken.val);

return ret;

}

TreeNode* E1(Scanner* s) {

return IsTerm(s, INTLITERAL);

}

TreeNode* E2(Scanner* s) {

TOKEN nxtTok = s->GetNextToken();

if(nxtTok == LPAREN) {
TreeNode* left

E(s);

if(!left) return NULL;

TreeNode* root

= OP(s);

if(!root) return NULL;

TreeNode* right

E(s)

if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;
//set left and right as children of root.

return root;

}
CS406, IIT Dharwad

115

Building AST

TreeNode* OP(Scanner* s) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))
ret = CreateTreeNode(tok.val);
return ret;

}

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);

if(!lret) {
s->SetCurTokenSequence(prevToken);
ret = E2(s);

}

return ret;

Start the parser by invoking E().
Value returned is the root of the AST.

Exercise

* Did we build the AST bottom-up or top-down?

