
CS406: Compilers
Spring 2022

Week 5: Parsers – Bottom-up Parsing (background 
concepts), Bottom-up parsing (use of goto and action 

tables)
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Concept: configuration / item

➢Configuration or item has a form:

A -> X1... Xi Xi+1 ... Xj

➢Dot   can appear anywhere

➢Represents a production part of which has been matched 
(what is to the left of Dot)

➢LR parsers keep track of multiple (all) productions that can 
be potentially matched
➢We need a configuration set
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Concept: configuration / item

➢E.g. configuration set

stmt -> ID  := expr 

stmt -> ID  : stmt

stmt -> ID  

➢Dot at the extreme left of RHS of a production denotes that 
production is predicted

➢Dot at the extreme right of RHS of a production denotes 
that production is recognized

➢if Dot precedes a Non-Terminal in a configuration set, more 
configurations need to be added to the set
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Corresponding to productions:
stmt -> ID := expr 
stmt -> ID : stmt
stmt -> ID  



Concept: closure

➢For each configuration in the configuration set,

A -> α Bγ, where B is a non-terminal,

1 add configurations of the form:

B ->  δ

2 if the addition introduces a configuration with Dot 
behind a new non-Terminal N, add all configurations having 
the form N ->    ε

Repeat 2 when another new non-terminal is 
introduced and so on..
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Concept: closure

➢E.g. closure {S -> E$}
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S -> E$

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Non-terminal



Concept: closure

➢E.g. closure {S -> E$}
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S -> E$
E -> E+T

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Non-terminal



Concept: closure

➢E.g. closure {S -> E$}
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S -> E$
E -> E+T
E -> T

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

Non-terminal



Concept: closure

➢E.g. closure {S -> E$}
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S -> E$
E -> E+T
E -> T

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

New Non-terminal



Concept: closure

➢E.g. closure {S -> E$}

CS406, IIT Dharwad 9

S -> E$
E -> E+T
E -> T
T -> ID

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

New Non-terminal



Concept: closure

➢E.g. closure {S -> E$}
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S -> E$
E -> E+T
E -> T
T -> ID
T -> (E)

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

New Non-terminal



Concept: closure

➢E.g. closure {S -> E$}
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S -> E$
E -> E+T
E -> T
T -> ID
T -> (E)

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar



Concept: successor

➢E.g. successor ({S -> E$}, E) 

➢Consider all symbols that are to the immediate right of Dot 
and compute respective successors
➢You must compute closure of successor before finalizing items in 

successor 
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S -> E$
E -> E+T
E -> T
T -> ID
T -> (E)

S -> E$
E -> E+T | T
T -> ID | (E)

Grammar

S -> E $
E -> E +T

E



Concept: CFSM

➢Each configuration set becomes a state

➢The symbol used as input for computing the 
successor becomes the transition  

➢Configuration-set finite state machine (CFSM)
➢The state diagram obtained after computing the chain of 

all successors (for all symbols) starting from the 
configuration involving the first production
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Example: CFSM
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Grammar
P->S
S->x;S
S->e

Start with a configuration for the first production

P-> S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute closure

P-> S Non-terminal



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Add item

P-> S
S-> x;S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Add item

P-> S
S-> x;S
S-> e



Example: CFSM
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Grammar
P->S
S->x;S
S->e

No new non-terminal before Dot. This becomes a state in CFSM

P-> S
S-> x;S
S-> e

state 0



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol x

P-> S
S-> x;S
S-> e

state 0

x

Consider items (in state 0), where x is to the immediate right of Dot. 

Advance Dot by one symbol.



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where x is to the immediate right of Dot. 

Advance Dot by one symbol.



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where x is to the immediate right of Dot. 

Advance Dot by one symbol.

No non-terminals immediately after Dot in the successor. So, no 

configurations get added. Successor becomes another state in 

CFSM.

state 1



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot. 

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of 

state 1. So, add configurations.

state 1

;
S->x; S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot. 

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of 

state 1. So, add configurations. 

state 1

;
S->x; S
S-> x;S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot. 

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of 

state 1. So, add configurations. 

state 1

;
S->x; S
S-> x;S
S-> e



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 1) under symbol ;

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 1), where ; is to the immediate right of Dot. 

Advance Dot by one symbol.

There is a non-terminal immediately after Dot in the successor of 

state 1. So, add configurations.  No more items to be added. 

Becomes another state in CFSM.

state 1

;
S->x; S
S-> x;S
S-> e
state 2



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where e is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e



Example: CFSM

CS406, IIT Dharwad 29

Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where e is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where e is to the immediate right of Dot. 

Advance Dot by one symbol. No more items to be added. Becomes 

another state in CFSM.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where x is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol x

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where x is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where S is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where S is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 2) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 2), where S is to the immediate right of Dot. 

Advance Dot by one symbol. No more items to be added. Becomes 

another state in CFSM.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4



Example: CFSM

CS406, IIT Dharwad 36

Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where e is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol e

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where e is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where S is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where S is to the immediate right of Dot. 

Advance Dot by one symbol.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 



Example: CFSM
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Grammar
P->S
S->x;S
S->e

Compute successor (of state 0) under symbol S

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

Consider items (in state 0), where S is to the immediate right of Dot. 

Advance Dot by one symbol. Cannot expand CFSM anymore.

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5



Example: CFSM
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• All states with Dot at extreme right become reduce states

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5



Example: CFSM

CS406, IIT Dharwad 42

• All states with Dot at extreme right become reduce states

Reduce 3

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5

Grammar
1) P->S
2) S->x;S
3) S->e



Example: CFSM
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• All states with Dot at extreme right become reduce states

Reduce 2

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S

state 4

e

S

P->S 
state 5

Grammar
1) P->S
2) S->x;S
3) S->e



Example: CFSM
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• All states with Dot at extreme right become reduce states

Accept

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S
state 5

Grammar
1) P->S
2) S->x;S
3) S->e



Example: CFSM
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• Remaining states become shift states

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5

Grammar
1) P->S
2) S->x;S
3) S->e



Conflicts
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• What happens when a state has Dot at the extreme right 

for one item and in the middle for other items?

Shift-reduce conflict
Parser is unable to decide between shifting and reducing

• When Dot is at the extreme right for more than one items?

Reduce-Reduce conflict
Parser is unable to decide between which productions to choose for 

reducing



Example: goto table
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• construct transition table from CFSM.
• Number of rows = number of states

• Number of columns = number of symbols

P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5



Example: goto table
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P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5

state x ; e P S

0 1 3 5

1 2

2 1 3 4

3

4

5



Example: action table
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P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5

state x

0 Shift

1 Shift

2 Shift

3 Reduce 3

4 Reduce 2

5 Accept



Example: action table
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P-> S
S-> x;S
S-> e

state 0

x S->x ;S

state 1

;
S->x; S
S-> x;S
S-> e
state 2e

S->e 

state 3

x S
S->x;S 

state 4

e

S

P->S 
state 5



LR(0) Parsing

• Previous Example of LR Parsing was LR(0)
• No (0) lookahead involved

• Operate based on the parse stack state and with goto
and action tables  (How?)
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LR(0) Parsing

• Assume: Parse stack contains α == saying that a e.g. 
prefix of  x;x is seen in the input string
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LR(0) Parsing

• Assume: Parse stack contains α == saying that a 
prefix of  x;x is seen in the input string

Go from state 0 to state 1 consuming x
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LR(0) Parsing

• Assume: Parse stack contains α == saying that a 
prefix of  x;x is seen in the input string

Go from state 1 to state 2 consuming ;
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LR(0) Parsing

• Assume: Parse stack contains α == saying that a 
prefix of  x;x is seen in the input string

Go from state 2 to state 1 consuming x
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LR(0) Parsing

• Assume: Parse stack contains α. 

=> we are in some state s
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LR(0) Parsing

• Assume: Parse stack contains α. 

=> we are in some state s. 
We reduce by X->β if state s contains X->β

• Note: reduction is done based solely on the current 
state.
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LR(0) Parsing

• Assume: Parse stack contains α. 
=> we are in some state s. 

• Assume: Next input is t
We shift if s contains X->β  tω

== s has a transition labelled t
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LR(0) Parsing

• What if s contains X->β  tω and  X->β  ?
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S’->.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->int

S’->E. 

E->T.
E->T.+E

T->int.*T
T->int.

T->int*.T
T->.(E)
T->.int*T
T->.int

E->T+.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

T->int*T.

T->(E.)

T->(E).

E->T+E.

T->(.E)
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

(

E

(

((

)

E

int

T

+

T

int

T
int

int

*

E

T

2

1

3

4

5

6

7

8

9

10

11

Conflicts or not?
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SLR Parsing

• SLR Parsing improves the shift-reduce conflict states of 
LR(0):

Reduce X->β  only if

t ϵ Follow(X)
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S’->.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->int

S’->E. 

E->T.
E->T.+E

T->int.*T
T->int.

T->int*.T
T->.(E)
T->.int*T
T->.int

E->T+.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

T->int*T.

T->(E.)

T->(E).

E->T+E.

T->(.E)
E->.T
E->.T+E
T->.(E)
T->.int*T
T->.int

(

E

(

((

)

E

int

T

+

T

int

T
int

int

*

E

T

2

1

3

4

5

6

7

8

9

10

11

Follow(E) = { $, ) }  => reduce by E->T. only if next input is $ or )

lookahead 1 62CS406, IIT Dharwad



E->.E+E
E->.id

E->id. 

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)?

+

id

E->E+E.
E->E.+E

E

+3

4

5
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E->.E+E
E->.id

E->id. 

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)? 

+

id

E->E+E.
E->E.+E

E

+3

4

5
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E->.E+E
E->.id

E->id. 

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

Follow(E) = {+,$} => in state 5, reduce by E->E+E. only if next input is $ or +

+

id

E->E+E.
E->E.+E

E

+3

4

5
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E->.E+E
E->.id

E->id. 

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

Follow(E) = {+,$} => in state 5, reduce by E->E+E. only if next input is $ or +

But state 5 has E->E.+E (shift if next input is +)
Shift-reduce conflict!

+

id

E->E+E.
E->E.+E

E

+3

4

5
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E->.E+E
E->.id

E->id. 

E->E.+E

E->E+.E
E->.E+E
E->.id

E
id

2

1

What about the grammar E-> E + E | id ?

LR(0)? SLR(1)?

Follow(E) = {+,$} => in state 5, reduce by E->E+E. only if next input is $ or +

But state 5 has E->E.+E  (shift if next input is +)
Shift-reduce conflict!

%left + 
says reduce if the next input symbol is + i.e. prioritize rule E+E. over E.+E

+

id

E->E+E.
E->E.+E

E

+3

4

5
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Discussion:  LR and LL Parsers

• LR Parsers:
• For the next token, t, in input sequence, LR parsers try to answer: 

i) should I put this token on stack? or ii) should I replace a set of 
tokens that are at the top of a stack?

In shift states (case i), if there is no transition out of that state 
for t, it is a syntax error.

• LL Parsers:
• LL parsers ask the question: which rule should I use next based on 

the next input token t?. Only after expanding all non-terminals of 
the rule considered, they move on to consume the subsequent 
input tokens
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Discussion: LR and LL Parsers

69

Grammar: 
1: S -> F
2: S -> (S + F)
3: F -> a

input: 
(a+)

Accepted or Not 
accepted?

Parse Table (Top-Down)
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Discussion: LR and LL Parsers

70

Grammar: 
1: S -> F
2: S -> (S + F)
3: F -> a

input: 
(a+)

Accepted or Not 
accepted?

Goto and Action Table?
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Hand-Written Parser - FPE 

• Fully parenthesized expression (FPE)
• Expressions (algebraic notation) are the normal way we 

are used to seeing them. E.g. 2 + 3

• Fully-parenthesized expressions are simpler versions: 
every binary operation is enclosed in parenthesis

• E.g. 2 + 3 is written as (2+3)

• E.g. (2 + (3 * 7)) 

• We can ignore order-of-operations (PEMDAS rule) in FPEs.
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• Either a:

1. A number (integer in our example) OR

2. Open parenthesis ‘(‘ followed by

FPE followed by

an operator (‘+’, ‘-’, ‘*’, ‘/’) followed by

FPE followed by

closed parenthesis ‘)’

FPE – definition
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1. E -> INTLITERAL

2. E -> (E op E)

3. op -> ADD | SUB | MUL | DIV

FPE – Notation
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1. One function defined for 
every non-terminal
• E, op

2. One function defined for 
every production
• E1, E2

3. One function defined for all 
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV
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1. One function defined for 
every non-terminal
• E, op

2. One function defined for 
every production
• E1, E2

3. One function defined for all 
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV
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bool IsTerm(Scanner* s, TOKEN tok) { 

}

Implementing a parser for FPE

Assume that a scanner module has been provided.
The scanner has one function, GetNextToken, that 
returns the next token in the sequence. Can be any one of: INTLITERAL, LPAREN, 

RPAREN, ADD, SUB, MUL, DIV 

This function checks if the next token returned by the scanner matches the expected 
token. Returns true if match. false if no match.

return s->GetNextToken() == tok;
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1. One function defined for 
every non-terminal
• E, op

2. One function defined for 
every production
• E1, E2

3. One function defined for all 
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV
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bool E1(Scanner* s) { 

return IsTerm(s, INTLITERAL);

}

Implementing a parser for FPE

This function implements production #1: E->INTLITERAL 
Returns true if the next token returned by the scanner is an INTLITERAL. false
otherwise.
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1. One function defined for 
every non-terminal
• E, op

2. One function defined for 
every production
• E1, E2

3. One function defined for all 
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV
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1: bool E2(Scanner* s) { 

2: return IsTerm(s, LPAREN) && 
E(s) && 
OP(s) && 
E(s) && 
IsTerm(s, RPAREN); 

3: }

Implementing a parser for FPE

This function implements production #2: E->(E op E)
Returns true if the Boolean expression on line 2 returns true. false otherwise.
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1. One function defined for 
every non-terminal
• E, op

2. One function defined for 
every production
• E1, E2

3. One function defined for all 
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV
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bool OP(Scanner* s) { 

TOKEN tok = s->GetNextToken();

if((tok == ADD) || (tok == SUB) || (tok == 
MUL) || (tok == DIV))

return true;

return false;

}

Implementing a parser for FPE

This function implements production #3: op->ADD|SUB|MUL|DIV 
Returns true if the next token returned by the scanner is any one from ADD, SUB, 
MUL, DIV. false otherwise.
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1. One function defined for 
every non-terminal
• E, op

2. One function defined for 
every production
• E1, E2

3. One function defined for all 
terminals
• IsTerm

Implementing a parser for FPE

1.E -> INTLITERAL

2.E -> (E op E)

3.op -> ADD | SUB | MUL | DIV
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bool E(Scanner* s) { 

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

Assume that GetCurTokenSequence
returns a reference to the first token in 
a sequence of tokens maintained by 
the scanner
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bool E(Scanner* s) { 

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

//This line implements the check to see if the sequence of tokens match production #1: 
E->INTLITERAL.CS406, IIT Dharwad 85



bool E(Scanner* s) { 

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

//because E1(s) calls s->GetNextToken() internally, the reference to the sequence of tokens 
would have moved forward. This line restores the reference back to the first node in the 
sequence so that the scanner provides the correct sequence to the call E2 in next lineCS406, IIT Dharwad 86



bool E(Scanner* s) { 

TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Implementing a parser for FPE

This function implements the routine for matching non-terminal E

//This line implements the check to see if the sequence of tokens match production #2: 
E->(E op E)
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IsTerm(Scanner* s, TOKEN tok) { return s->GetNextToken() == tok;}

bool E1(Scanner* s) { 
return IsTerm(s, INTLITERAL); 

}

bool E2(Scanner* s) { return IsTerm(s, LPAREN) && E(s) && OP(s) && E(s) && IsTerm(s, RPAREN); }

bool OP(Scanner* s) {
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))

return true;
return false;  

}

bool E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

} 

Start the parser by invoking E().
Value returned tells if the expression is FPE or not.

Implementing a parser for FPE
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Exercise

• What parsing technique does this parser use?
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slide courtesy: Milind Kulkarni
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Exercise

• https://forms.gle/gd8VwA9UyNaZiWKB8
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Semantic Processing

Lexical Analysis  

Parsing 

Semantic Processing  

Detects programs with illegal tokens

filter

filter

filter

93

Referred to as 
“Front-end” Detects programs with ill-formed 

programming constructs i.e. invalid 
parse tree structure

Detects all remaining errors
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Semantic Processing

• Syntax-directed / syntax-driven
• Routines (called as semantic routines) interpret the meaning 

of programming constructs based on the syntactic structure 

• Routines play a dual role
• Analysis – Semantic analysis

• undefined vars, undefined types, uninitialized variables, type errors that 
can be caught at compile time, unreachable code, etc. 

• Synthesis – Generation of intermediate code
• 3 address code

• Routines create semantic records to aid the analysis and 
synthesis
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Semantic Processing

• Syntax-directed translation: notation for attaching
program fragments to grammar productions.

• Program fragments are executed when productions are 
matched

• The combined execution of all program fragments produces 
the translation of the program

e.g. E->E+T 

Output: program fragments may create AST and 3 Address Codes

• Attributes: any ‘quality’ associated with a terminal and 
non-terminal e.g. type, number of lines of a code, first line of 
the code block etc.

95

{ print(‘+’) }

CS406, IIT Dharwad



Why Semantic Analysis?

• Context-free grammars cannot specify all 
requirements of a language

• Identifiers declared before their use (scope)

• Types in an expression must be consistent

STRING str:= “Hello”;
str := str + 2;

• Number of formal and actual parameters of a function 
must match

• Reserved keywords cannot be used as identifiers

• A Class is declared only once in a OO language, a 
method of a class can be overridden.

• …
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Abstract Syntax Tree

• Abstract Syntax Tree (AST) or Syntax Tree can be the 
input for semantic analysis.

• What is Concrete Syntax Tree? – the parse tree

• ASTs are like parse trees but ignore certain details:

E.g. Consider the grammar:

E - > E + E

| ( E )

| int

The parse tree for 1+(2+3) 

97

E

E E

E( )

E E+

int int

int

+
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AST - Example

• Not all details (nodes) of the parse tee are helpful 
for semantic analysis

The parse tree for 1+(2+3) :

We need to compute the result of the expression. So, 
a simpler structure is sufficient:

AST for 1+(2+3):

98

E

E E

E( )

E E+

int int

int

+

+

1 +

2 3

Single child. 
Can compress.

Expresses associativity. 
Lower subtree in the 
hierarchy can express.
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AST - Example

99

ASSIGN_OP

IDENTIFIER
(“foo”)

STRINGLITERAL
(“Hello World”)

≡

STRING foo := “Hello World” ; 

parse tree 

AST
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Semantic Analysis – Example

• Context-free grammars cannot specify all 
requirements of a language

• Identifiers declared before their use (scope)

• Types in an expression must be consistent
Type checks
STRING str:= “Hello”;
str := str + 2;

• Number of formal and actual parameters of a function 
must match

• Reserved keywords cannot be used as identifiers

• A Class is declared only once in a OO language, a 
method can be overridden.

• …
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Scope

• Goal: matching identifier declarations with uses

• Most languages require this!

• Scope confines the activity of an identifier

in different parts of the program:
• Same identifier may refer to different things
• Same identifier may not be accessible

101

ASSIGN_OP

IDENTIFIER
(“foo”)

STRINGLITERAL
(“hello world”)

What if foo is declared as 
a STRING in an enclosing 
scope but is an INT in the 
current scope?  
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Static Scope

• Most languages are statically scoped
• Scope depends on only the program text (not runtime 

behavior)

• A variable refers to the closest defined instance

102

INT w, x;
{

FLOAT x, z;
f(x, w, z);

}
g(x)

x is a FLOAT here

x is an INT here
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Dynamic Scope

• In dynamically scoped languages
• Scope depends on the execution context

• A variable refers to the closest enclosing binding in the 
execution of the program

103

f(){
a=4; g();

}
g() { print(a); }

value of a is 4 here
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Exercise: Static vs. Dynamic Scope

104

#define a (x+1) //macro definition

int x = 2; //global var definition

//function b definition
void b() { 

int x = 1; 
printf(“%d\n”,a);

}

//function c definition
void c() { 

printf(“%d\n”,a);
}

//the main function
int main() { b(); c(); }

Is x statically scoped or dynamically 
scoped?
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Symbol Table

• Data structure that tracks the bindings of identifiers. 
Specifically, returns the current binding. 

• E.g., stores a mapping of names to types
• Should provide for efficient retrieval and frequent insertion

and deletion of names. 
• Should consider scopes

• Can use stacks, binary trees, hash maps for 
implementation 

105

{
int x = 0; 
//accessing y here should be illegal
{

int y = 1;
}

}
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Symbol Table and Classes in OO 
Language

• Class names may be used before their definition

• Can’t use symbol table (to check class definition) 
• Gather all class names first.

• Check bindings next. 

• Semantic analysis is done in multiple passes

• One of the goals of semantic analysis is to 
create/update data structures that help the next round 
of analysis

106

Implies going over the program text 
multiple times
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Semantic Analysis – How?

• Recursive descent of AST
• Process a node, n

• Recurse into children of n and process them

• Finish processing the node, n

Do a postorder processing of the AST

• As you visit a node, you will add information depending 
upon the analysis performed

• The information is referred to as attributes of the node
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• Fully-Parenthesized Expressions (FPE) 
• Can build while parsing via bottom-up building of the tree
• Create subtrees, make those subtrees left- and right-children 

of a newly created root.
• Need to modify the hand-written recursive parser:

if: 
token == INTLITERAL, return a reference to newly created node containing 
a number

else: 
store references to nodes that are left- and right- expression subtrees 
Create a new node with value = ‘OP’ 

Building AST - Example
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TreeNode* IsTerm(Scanner* s, TOKEN tok) { 
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

Building AST - Example

This function creates an AST node and adds information that stores the value of an 
INTLITERAL in the node. A reference to the AST node is returned.
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TreeNode* E1(Scanner* s) { 

return IsTerm(s, INTLITERAL);

}

Building AST

E1 needs to change because IsTerm returns a TreeNode*. 
E1 returns a TreeNode* now. Recall: E1 is the function that gets 

called when predicting using the 
production: E -> INTLITERAL
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• Fully-Parenthesized Expressions (FPE) 
• Can build while parsing via bottom-up building of the tree
• Create subtrees, make those subtrees left- and right-children 

of a newly created root.
• Need to modify the hand-written recursive parser:

if: 
token == INTLITERAL, return a reference to newly created node containing 
a number

else: 
store references to nodes that are left- and right- expression subtrees 
Create a new node with value = ‘OP’ 

Building AST - Example
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TreeNode* OP(Scanner* s, TOKEN tok) { 
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == 

MUL) || (tok == DIV))
ret = CreateTreeNode(tok.val);

return ret;  
}

Building AST

This function creates an AST node and adds information that stores the value of an 
op in the node. A reference to the AST node is returned.

Recall: op is the function that gets called 
when predicting using the production:
op -> ADD | SUB | MUL | DIV
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TreeNode* E2(Scanner* s, TOKEN tok) { 
TOKEN nxtTok = s->GetNextToken(); 
if(nxtTok == LPAREN) {

TreeNode* left = E(s); if(!left) return NULL;
TreeNode* root  = OP(s); if(!root) return NULL;
TreeNode* right = E(s); if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL; 

//set left and right as children of root.
return root;

}

Building AST

This function sets the references to left- and right- expression subtrees if those 
subtrees are valid FPEs. Returns reference to the AST node corresponding to the op 
value, NULL otherwise. Recall: E2 is the function that gets 

called when predicting using the 
production: E -> (E op E)
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TreeNode* E(Scanner* s) { 

TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

Building AST

E needs to change because E1, E2, and OP return a TreeNode*. 
E returns a TreeNode* now.

Recall: E is the higher-level function for a non-terminal that gets 
called when predicting using either of the productions for E:  
E -> (E op E) | INTLITERAL
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TreeNode* IsTerm(Scanner* s, TOKEN tok) { 
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

TreeNode* E1(Scanner* s) { 
return IsTerm(s, INTLITERAL); 

}

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken(); 
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root  = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL; 

//set left and right as children of root.
return root;

}

Building AST
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TreeNode* OP(Scanner* s) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))

ret = CreateTreeNode(tok.val);
return ret;  

}

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

} 

Building AST

Start the parser by invoking E().
Value returned is the root of the AST.
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Exercise

• Did we build the AST bottom-up or top-down?
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