
CS406: Compilers
Spring 2022

Week 3: Scanners (conclusion), Parsers

CS406, IIT Dharwad 1

Quiz_14_1 Discussion (Regular
Expressions)

1. (s|p|m)(a|o)(n|g)(k|g|b|h)(r|a|i)(a|l|h)(n|u)*(ti)*

matches “sankran”, “mankran” etc.

2. b?ho(g|l)i

matches `hogi` etc.

3. Sankranti | Christmas | Rath Yatra | Bhai Duj | Shivaji Jayanthi

incorrect: (Christmas / Shivaji Jayanthi / Bhai Duj / Rath Yatra)

4. lohri|pongal|Sankranti

(only 3 correct answers)

5. Pongal, sankranti,magha, bihu

(Incorrect regular expression. Matches “Pongal,Sankranti,magha,bihu”)

2CS406, IIT Dharwad

Scanners (Summary)

• Also called Lexers / Lexical Analyzers

• Input: stream of letters (program text / source
code), Output: sequence / list of tokens

• Token: a pair <category/class, value>
• Category defines a string pattern
• Value also called lexeme
• Value is a prefix (and hence, is a substring)
• Value matches on of the patterns that category

defines

• Scan left-to-right in program text, look-ahead
to identify tokens.

• Look-ahead buffer size determined by language
design

CS406, IIT Dharwad 3

Scanners (Summary)

• Regular expressions are used to formally
define the patterns specified by token classes.

• Some customization done while defining regular
expressions: 1) Match the longest substring possible 2)
Handle errors

• Tools such as Flex and ANTLR convert regular
expressions to code. The code is your scanner
implementation

• The implementation typically converts regular
expressions to Finite Automata (special kind of
state diagram)

• Automata are coded using efficient algorithms (E.g. Table-
lookup method)

• Efficient algorithms exist for substring matching
(requiring single-pass over input program text)

• Aho-Corasic, Knuth-Morris-Pratt (KMP)

CS406, IIT Dharwad 4

Parsers - Overview

• Also called syntax analyzers

• Determine two things:
1. Is a program syntactically valid?

(Analogy) is an English language sentence
grammatically correct?

2. What is the structure of programming language
constructs? E.g. does the sequence*

IF, ID(a), OP(<), ID(b), {, ID(a),
ASSIGN, LIT(5), }}

refer to an if statement?

(Analogy) diagramming English sentences

CS406, IIT Dharwad 5

if (a < 4) {
b = 5

}

* Correponding program text:

Parsers - Overview

• Input: stream of tokens

• Output: Parse tree
• sometimes implicit

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

Stream of tokens:

Parse tree:

CS406, IIT Dharwad 6cond-expr assign-stmtKeyword (IF)

stmt

stmt-list

() { }

if_stmt

Parsers – what do we need to know?

1. How do we define language constructs?

• Context-free grammars

2. How do we determine: 1) valid strings in the
language? 2) structure of program?

• LL Parsers, LR Parsers

3. How do we write Parsers?

• E.g. use a parser generator tool such as Bison

CS406, IIT Dharwad 7

Languages

• A language is (possibly infinite) set of strings

• Regular expressions specify regular languages. However,
regular languages are weak formal languages to describe
the features of a practical programming language.

CS406, IIT Dharwad 8

1

1

0
0

The FA shown accepts all string with odd
number of 1s.

weakness: regular expressions can’t describe a string of the form: { (i)i | i>=1}

Regular expressions can describe strings specifying parity:
{ mod k | k=# states in FA}

What set of strings does this FA accept?

What is the regular expression for the FA?

(0*10*)(10*10*)*

Regular Languages

• Regular expressions can’t describe a string of the form:

{ (i)i | i>=1}

Nested structures:

E.g. Parenthesized expressions

(((int x;)))

IF
IF
IF
FI

FI
FI

Programming language syntax is i.e. recursive
((2+3)*5)

CS406, IIT Dharwad 9

Context Free Grammar (CFG)

• Natural notation for describing recursive structure definitions.
Hence, suitable for specifying language constructs.

• Consist of:

• A set of Terminals (T)

• A set of Non-terminals (N)

• A Start Symbol (S∈N)

• A set of Productions (X -> Y1..YN) (aka. rules)

P:X Y1Y2Y3..YN

CS406, IIT Dharwad 10

X∈N, Yi∈ N ⋃ T ⋃ ϵ/λ

Context Free Grammar (CFG)

• Grammar G = (T, N, S, P)

E.g. G = ({a,b}, {S, A, B}, S, {S AB, A Aa

A a, B Bb, B b})

• Implicit meanings

• First rule listed in the set of productions contains start symbol (on the left-
hand side)

• In the set of productions, you can replace the symbol X (appearing on the
right-hand side only) with the string of symbols that are on the right-hand
side of a rule, which has X (on the left-hand side)

CS406, IIT Dharwad 11

Context Free Grammar (CFG)

1. Begin with only S as the initial string

2. Replace S

• S replaced with AB

3. Repeat 2 until the string contains only terminals

i. AB replaced with aB

ii. aB replaced with ab

G = (T, N, S, P)
P:{ S->AB,

A->Aa,
A->a,
B->Bb,
B->b }

Summary: we move from S to a string of terminals through a series of transformations:

α0-> … -> αn where α1 . . . αn are strings

α0-> αn
*Shorthand notation:

CS406, IIT Dharwad 12

Detour: Context-Sensitive Grammar

• Can have context-sensitive grammar and languages
(think: aB->ab)

• Cannot replace right-hand side with left-hand side irrespective of the
context.

• E.g. aB->ab lays down a context: ‘a’ must be a prefix in order to
transform the string “aB” to a string of terminals “ab”

• ccaBb can be replaced by ccabb

Is grammar G context-free?

G = (T, N, S, P)
P:{ S->AB,

A->Aa,
A->a,
B->Bb,
B->b }

CS406, IIT Dharwad 13

Slide courtesy: Milind Kulkarni

A -> Aa

| a

CS406, IIT Dharwad 14

Alternative notation for two
productions A->Aa and A->a

(Summary)

15CS406, IIT Dharwad
Slide courtesy: Milind Kulkarni

Language of the Grammar

• Language L(G) of the context-free grammar G

• Set of strings that can be derived from S

• {a1a2a3..aN | ai∈ T Ɐ i and }

• Is called context-free language

• All regular languages are context-free but not vice-versa.

• Can have many grammars generating same language.

S-> a1a2a3..aN
*

CS406, IIT Dharwad 16

String Derivations: Does a string
belong to the Language?

• How do we apply the grammar rules to determine the
acceptability of a string? (i.e. the string belongs to the language, L(G),
specified by the CFG G)

• Begin with S

• Replace S

• Repeat till string contains terminals only. Why terminals only?

• Notation:
• We will use Greek letters to denote strings containing non-terminals

and terminals

• Derivations: sequence of rules applied to produce the string of
terminals

L(G) must contain strings of terminals only

CS406, IIT Dharwad 17

18CS406, IIT Dharwad
Slide courtesy: Milind Kulkarni

(Example)

19

CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS406, IIT Dharwad

20

Exercise

Which of the below strings are accepted by the
grammar:

1. abcba

2. abcbca

3. abba

4. abca

1: A -> aAa
2: A -> bBb
3: A -> λ
4: B -> cA
5: B -> λ

1->2->4->3

1->2->5

CS406, IIT Dharwad

21CS406, IIT Dharwad
Slide courtesy: Milind Kulkarni

22

Derivations and Parse Trees

• Recall: Derivation is a sequence of rules applied to
produce a string

• S -> α0 -> α1 -> α2 -> . . . ->αn

• A derivation defines a parse tree

• Parse tree is an alternative way to gather information on
how the string was derived

• A parse tree may have many derivations (think: different
permutations of α)

CS406, IIT Dharwad

23

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

CS406, IIT Dharwad

24

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Start with E, the start symbol Parse Tree

EE

CS406, IIT Dharwad

25

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Replace E with E + E Parse Tree

E

E E+

E
E+E

CS406, IIT Dharwad

26

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 2: Replace E with E * E Parse Tree

E

E E+

E E*

E
E+E
E*E+E

CS406, IIT Dharwad

27

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E

CS406, IIT Dharwad

28

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E
id*id+E

idCS406, IIT Dharwad

29

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id Parse Tree

E
E+E
E*E+E
id*E+E
id*id+E
id*id+id

E

E E+

E E*

id

id

idCS406, IIT Dharwad

30

Derivations and Parse Trees

• Note in previous slides:
• Replacement done on left-most non-terminal in the

string - called left-most derivation

• Terminals at leaves and non-terminal as interior nodes

• Inorder traversal of leaves produces input string
id*id+id E

E E+

E E*

id

id

id

CS406, IIT Dharwad

31

Derivations and Parse Trees

• Note in previous slides:
• Replacement done on left-most non-terminal in the

string - called left-most derivation

• Terminals at leaves and non-terminal as interior nodes

• Inorder traversal of leaves produces input string
id*id+id

• Parse tree shows association of operations. Input string
doesn’t

• * associated with identifiers in the subtree

(id * id)+id

E

E E+

E E*

id

id

id

CS406, IIT Dharwad

32

Derivations and Parse Trees

• Consider the same grammar (having the following rules):

• Produce derivations for the string: id*id+id
• Using right-most derivations

i.e. replace the right-most non-terminal

1: E -> E + E
2: | E * E
3: | id

CS406, IIT Dharwad

33

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Start with E, the start symbol

Parse Tree
E

E

CS406, IIT Dharwad

34

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 2: Replace E with E+E

Parse Tree
E
E+E

E

E E+

CS406, IIT Dharwad

35

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Replace E with id

Parse Tree
E
E+E
E+id

E

E E+

id

CS406, IIT Dharwad

36

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with E * E

Parse Tree
E
E+E
E+id
E*E+id

E

E E+

id
E E*

CS406, IIT Dharwad

37

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id

E

E E+

idE E*

idCS406, IIT Dharwad

38

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id
id*id+id

E

E E+

idE E*

ididCS406, IIT Dharwad

• We get the same parse tree using left-most and right-most
derivations.

• Every parse tree has left-most and right-most (and any random
order) derivations.

39

E

E E+

idE E*

idid

Derivations and Parse Trees

CS406, IIT Dharwad

• We get the same parse tree using left-most and right-most
derivations.

• Every parse tree has left-most and right-most (and any random
order) derivations.

• But there could be a string (or more than one strings) for which there
exists derivations that would get different parse trees

40

E

E E+

idE E*

idid

Derivations and Parse Trees

CS406, IIT Dharwad

41

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Start with E, the start symbol

Parse Tree
E

E

CS406, IIT Dharwad

42

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 2: Replace E with E*E

Parse Tree
E
E*E

E

E E*

Earlier it was replace E with E+E

CS406, IIT Dharwad

43

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Replace E with E+E

Parse Tree
E
E*E
E*E+E

E

E E*

E E+

CS406, IIT Dharwad

44

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id

E

E E*

E E+

idCS406, IIT Dharwad

45

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id

E

E E*

E E+

id idCS406, IIT Dharwad

46

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id
id*id+id

E

E E*

E E+

id

id

idCS406, IIT Dharwad

• Input string: id*id+id

• Inorder traversal of leaves in both trees produces the
same input string

47

E

E E*

E E+

id

id

id

E

E E+

E E*

id

id

id

Derivations and Parse Trees

nowearlier

CS406, IIT Dharwad

48

Ambiguous Grammar

• Grammar that produces more than one parse tree for
some string

1: E -> E + E
2: | E * E
3: | id

CS406, IIT Dharwad

49

Ambiguity – what to do?

• Ignore it (let it be ambiguous)
• Give hints to other components of the compiler on how to

resolve it

• Fix it (Manually)
• May make the grammar complicated and difficult to

maintain

CS406, IIT Dharwad

50

Ambiguity – ignore

• Grammar: E -> E + E | id input:id+id+id

E

E+

id

id id

E

E E+

id
E E+

id id

E->E+E E->E+E

(left associative for +. So, produces the

parse tree on the right)
CS406, IIT Dharwad

E->id+E

E->id+E+E

E->id+id+E

E->id+id+id

Matches the input, which would be
evaluated (later) as:

E

E E+

E->E+E+E
E->id+E+E

E->id+id+E

E->id+id+id

(id+id)+idid+(id+id)

%left + Provide hint (in Bison). Associativity declaration.

51

Ambiguity - ignore

• E -> E + E | E * E | id

E

E E+

id
E E*

id id

E->E+E
E->id+E
E->id+E*E
E->id+id*E
E->id+id*id

Produces
tree for:
id+(id*id)

E

E E*

id
E E+

id id

E->E*E
E->E+E*E
E->id+E*E
E->id+id*E
E->id+id*id

Produces
tree for:
(id+id)*id

CS406, IIT Dharwad

Tells that * has higher precedence over + and both are left
associative. So, we get the tree on left.

%left +
%left *

52

Ambiguity – fixing

• Rewrite as:

E->E’+E
E’->id*E’
E’->id
E->E’
E’->id

E -> E’ + E | E’
E’ -> id * E’ | id

E -> E + E
| E * E
| id

E

E’ E+

id E’* E’

id id

is the above sequence left-most or right-most derivation?

CS406, IIT Dharwad

| (E) * E’ | (E)

If you want to handle parenthesized
expressions such as (id+id)*id

- E controls generation of +
- E’ controls generation of *

Parse tree for input id*id+id

*’s are always nested deeper in the parse tree.

53

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse tree(s) for the
following input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

CS406, IIT Dharwad

54

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the
following input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

CS406, IIT Dharwad

55

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the
following input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

CS406, IIT Dharwad

56

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the
following

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

input: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

e1

STMT

if
STMT

EXPR

then

else
STMT

e2
s1

s2

STMT

if EXPR
then

else
STMT

e1
s2

STMT

if EXPR
then

e2

STMT

s1
CS406, IIT Dharwad

57

Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

e1

STMT

if
STMT

EXPR

then

else
STMT

e2
s1

s2

CS406, IIT Dharwad

58

Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

else
STMT

e1
s2

STMT

if EXPR
then

e2

STMT

s1

CS406, IIT Dharwad

59

Ambiguity Fixing - Exercise

Exercise: Rewrite the grammar to make it unambiguous.

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

CS406, IIT Dharwad

61

CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS406, IIT Dharwad

Next

62

Error Handling

• Objective: detect invalid programs and provide

meaningful feedback to programmer

• Report errors accurately

• Recover from errors quickly

• Don’t slow down compilation

CS406, IIT Dharwad

63

Error Types

• Many types of errors:

• Lexical – int 9abc; //invalid identifier

• Syntactic – extra brace inserted {

• Semantic – float sqr; sqr(2); //use variable
name with function call syntax

• Logical – use = instead of ==

CS406, IIT Dharwad

64

Error Handling - Types

1. Panic mode

2. Error production

3. Automatic local or global correction

CS406, IIT Dharwad

65

Panic Mode Error Handling

• Simplest, most popular

• Discards tokens until one from a set of synchronizing

tokens is found

• Synchronizing tokens have a clear role

e.g. semicolons, braces

• E.g. i= i++j

policy: while parsing an expression, discard all tokens

until an identifier is found. This policy skips the additional +

• Specifying policy in bison: error keyword

E -> E + E | (E) | id | error id | error

CS406, IIT Dharwad

66

Error Productions

• Anticipate common errors

– 2 x instead of 2 *

• Augment the grammar

– E -> EE | …

• Disadvantages:

– Complicates the grammar

CS406, IIT Dharwad

67

Error Corrections

• Rewrite the program – find a “nearby” correct

program
– Local corrections – insert a semicolon, replace a comma with

semicolon etc.

– Global corrections – modify the parse tree with “edit distance”

metric in mind

• Disadvantages?

– Implementation difficulty

– Slows down compilation

– Not sure if “nearby” program is intended

CS406, IIT Dharwad

68

CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS406, IIT Dharwad

Next

