
1

CS406: Compilers
Spring 2022

Week 2: Overview (winding up), Scanners

2

• Compiler and programming language designs

influence each other

– Higher level languages are harder to compile

• More work to bridge the gap between language and assembly

– Flexible languages are often harder to compile

• Dynamic typing (Ruby, Python) makes a language very flexible,

but it is hard for a compiler to catch errors (in fact, many simply

won’t)

– Influenced by architectures

• RISC vs. CISC

Design Considerations

CS406,IITDharwad

3

Programming Languages and

Real-world Usage

• Why are there so many programming languages?

• Why are there new languages?

• What is a good programming language?

CS406,IITDharwad

4

Programming Languages and

Real-world Usage

• Why are there so many programming languages?

– Distinct often conflicting requirements of the application

domain

Scientific

Computing

Floating-Point Arithmetic,

Parallelism Support,

Array Manipulation

FORTRAN

Business

Applications

No data loss (persistence), Reporting

capabilities, Data analysis tools

SQL

Systems

Programming

Fine-grained control of system

resources, real-time constraints

C/C++

CS406,IITDharwad

5

Programming Languages and

Real-world Usage

• Why are there new languages?

– To fill a technology gap

• E.g. arrival of Web and Java

• Java’s design closely resembled that of C++

• Widely-used languages are slow to change

• Easy to start a new language

Training a programmer on a new programming language is a dominant cost

CS406,IITDharwad

6

Programming Languages and

Real-world Usage

• What is a good Programming Language?

No universally accepted argument

CS406,IITDharwad

7

Scanner - Overview

• Also called lexers / lexical analyzers

• Recall: scanners

– See program text as a stream of letters

– break input stream up into a set of

tokens: Identifiers, reserved words,

literals, etc.

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

\tif (a<4) {\n\t\tb=5\n\t}

if (a < 4)
{

b = 5
}

CS406,IITDharwad

8

Scanner - Motivation

• Why have a separate scanner when you can

combine this with syntax analyzer (parser)?

– Simplicity of design

• E.g. rid parser of handling whitespaces

– Improve compiler efficiency

• E.g. sophisticated buffering algorithms for reading input

– Improve compiler portability

• E.g. handling ^M character in Linux (CR+LF in Windows)

CS406,IITDharwad

9

Scanner - Tasks

1. Divide the program text into substrings or lexemes

– place dividers

2. Identify the class of the substring identified

– Examples: Identifiers, keywords, operators, etc.
• Identifier – strings of letters or digits starting with a letter

• Integer – non-empty string of digits

• Keyword – “if”, “else”, “for” etc.

• Blankspace - \t, \n, ‘ ‘

• Operator – (,), <, =, etc.

– Observation: substrings follow some pattern

CS406,IITDharwad

10

Categorizing a Substring (

English Text)

• What is the English language analogy for class?

– Noun, Verb, Adjective, Article, etc.

– In an English essay, each of these classes can have a

set of strings.

– Similarly, in a program, each class can have a set of

substrings.

CS406,IITDharwad

11

Exercise

• How many tokens of class identifier exist in the

code below?

for(int i=0;i<10;i++) {
printf(“hello”);

}

CS406,IITDharwad

12

Scanner Output

• A token corresponding to each lexeme

– Token is a pair: <class, value>

A string / lexeme / substring of program text

Scanner Parser
tokensProgram

E.g. int x = 0; (Keyword, “int”),
(Identifier, “x”),
(“=”),
(Integer, “0”),
(“;”)

CS406,IITDharwad

13

Scanners – interesting examples

• Fortran (white spaces are ignored)

DO 5 I = 1,25

DO 5 I = 1.25

• PL/1 (keywords are not reserved)
DECLARE (ARG1, ARG2, . . ., ARGN);

• C++
Nested template: Quad<Square<Box>> b;

Stream input: std::cin >> bx;

DO Loop

Assignment statement

CS406,IITDharwad

14

Scanners – interesting examples

• How did we go about recognizing tokens in previous
examples?

– Scan left-to-right till a token is identified

– One token at a time: continue scanning the remaining
text till the next token is identified...

– So on…

We always need to look-ahead to identify tokens

….but we want to minimize the amount of look-ahead

done to simplify scanner implementation

CS406,IITDharwad

15

Scanners – what do we need to

know?

1. How do we define tokens?

– Regular expressions

2. How do we recognize tokens?

– build code to find a lexeme that is a prefix and that

belongs to one of the classes.

3. How do we write lexers?

– E.g. use a lexer generator tool such as Flex

CS406,IITDharwad

16

Scanner / Lexical Analyzer -

flowchart

Lexical specification Regular expressions

Implementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

Formalized through

translated by

produce

Black-Box

E.g. Scanner Generators Tools

CS406,IITDharwad

17

Scanner / Lexical Analyzer -

flowchart

Lexical specification Regular expressions

Implementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

Formalized through

translated by

produce

Hand-written code

Black-Box

CS406,IITDharwad

18

Scanner Generators

• Essentially, tools for converting regular

expressions into scanners

– Lex (Flex) generates C/C++ scanner program

– ANTLR (ANother Tool for Language Recognition)

generates Java program for translating program text

(JFlex is a less popular option)

– Pylexer is a Python-based lexical analyzer (not a

scanner generator). It just scans input, matches

regexps, and tokenizes. Doesn’t produce any program.

CS406,IITDharwad

19

Regular Expressions

• Used to define the structure of tokens

• Regular sets:
Formal: a language that can be defined by regular

expressions

Informal: a set of strings defined by regular expressions

Start with a finite character set or Vocabulary (V). Strings
are formed using this character set with the following
rules:

CS406,IITDharwad

20

Regular Expressions

- Strings are regular sets (with one element): pi 3.14159
– So is the empty string: λ (ɛ instead)

• Concatenations of regular sets are regular: pi3.14159

– To avoid ambiguity, can use () to group regexps together

• A choice between two regular sets is regular, using |:
(pi|3.14159)

• 0 or more of a regular set is regular, using *: (pi)*

• other notation used for convenience:
– Use Not to accept all strings except those in a regular set

– Use ? to make a string optional: x? equivalent to (x|λ)

– Use + to mean 1 or more strings from a set: x+ equivalent to xx*

– Use [] to present a range of choices: [1-3] equivalent to
(1|2|3)

slide courtesy: Milind KulkarniCS406,IITDharwad

21

Regular Expressions for Lexical

Specifications

• Digit:

• Letter:

• Literals (integers or floats):

• Identifiers:

• Comments (as in Micro):

• More complex comments (delimited by ##, can

use # inside comment):

slide courtesy: Milind Kulkarni

D = (0|1|2|3|4|5|6|7|8|9) OR [0-9]

L = [A-Za-z]

-?D+(.D*)?

(_|L)(_|L|D)*

--Not(\n)*\n

((#|λ) Not(#))*

CS406,IITDharwad

22

Lex (Flex)

slide courtesy: Milind KulkarniCS406,IITDharwad

23

Lex (Flex)

Lexer Compiler

C Compiler

a.out

lex.l lex.yy.c

lex.yy.c a.out

input stream tokens

CS406,IITDharwad

24

Lex (Flex)

• Format of lex.l

Declarations

%%

Translation rules

%%

Auxiliary functions

CS406,IITDharwad

25

Lex (Flex)

slide courtesy: Milind KulkarniCS406,IITDharwad

26

Lex (Flex)

slide courtesy: Milind Kulkarni
CS406,IITDharwad

Demo

27

CS406,IITDharwad

Documentation

• Flex (manual web-version):
Lexical Analysis With Flex, for Flex 2.6.2: Top (westes.github.io)

Lex - A Lexical Analyzer Generator (compilertools.net)

• ANTLR

CS406,IITDharwad

28

http://web.mit.edu/gnu/doc/html/flex_1.html
https://westes.github.io/flex/manual/index.html#SEC_Contents
http://dinosaur.compilertools.net/lex/index.html
https://www.antlr.org/

29

Summary

• We saw what it takes to write a scanner:

– Specify how to identify token classes (using regexps)

– Convert the regexps to code that identifies a prefix of the

input program text as a lexeme matching one of the

token classes

• Use tools for automatic code generation (e.g. Flex / ANTLR)

– How do the tools convert regexps to code? Finite Automata

OR

• Scanner code manually

CS406,IITDharwad

30

Scanner- Implementation

Lexical specification Regular expressions

Implementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

Formalized through

translated by

produce

Black-Box

CS406,IITDharwad

How does a tool such as Flex generate code?

31

Scanner - flowchart

Lexical specification Regular expressions NFA

DFAReduced DFAImplementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

CS406,IITDharwad

32

Finite Automata

• Another formal way to describe sets of strings (just

like regular expressions)

• Also known as finite state machines / automata

• Reads a string, either recognizes it or not

• Two Features:

– State: initial, matching / final / accepting, non-matching

– Transition: a move from one state to another

CS406,IITDharwad

33

Finite Automata

• Regular expressions and FA are equivalent*

* Ignoring the empty regular language

a

ba

initial state
state matching state

Exercise: what is the equivalent regular expression for this FA?

a

ba

initial state
state matching state

CS406,IITDharwad

34

Think of this as an arrow to a state without a label

CS406,IITDharwad

35

Non-deterministic Finite Automata

• A FA is non-deterministic if, from one state reading a single

character could result in transition to multiple states (or has

λ transitions)

• Sometimes regular expressions and NFAs have a close

correspondence

aba b

a(bb)+a

≡

CS406,IITDharwad

36
What about A? (? as in optional)

CS406,IITDharwad

37

Slide courtesy: Milind Kulkarni

38

Running an NFA - Example

• NFAs are concise but slow

• Example:

– Running the NFA for input string abbb requires exploring all

execution paths

*Example taken from https://swtch.com/~rsc/regexp/regexp1.html

CS406,IITDharwad

https://swtch.com/~rsc/regexp/regexp1.html

39

Running an NFA - Example

• NFAs are concise but slow

• Example:

– Running the NFA for input string abbb requires exploring all

execution paths

– Optimization: run through the execution paths in parallel

• Complicated. Can we do better?

CS406,IITDharwad

40

Deterministic Finite Automata

• Each possible input character read leads to at most one

new state

Slide courtesy: Milind Kulkarni

41

Slide courtesy: Milind Kulkarni

42

Slide courtesy: Milind Kulkarni

43

Slide courtesy: Milind Kulkarni

44

Implementation

• While doing lexical analysis, we need extensions to regular

expressions

– Match as long a substring as possible

– Handle errors

• Good algorithms for substring matching

– Require only a single pass over the input

• Using Tries

– Few operations per character

• Table look-up method

CS406,IITDharwad

45

Implementation: Transition Tables

• A table encodes states and transitions of FA

– 1 row per state

– 1 column per character in the alphabet

– Table entry: state (label) a b

c b

c

State /

Character

a b c

1 1 3 2

2 - 3 -

3 - - 3

1 2 3

CS406,IITDharwad

46

Example 1

NFA OR DFA?

CS406,IITDharwad

47

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

CS406,IITDharwad

48

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

CS406,IITDharwad

49

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

CS406,IITDharwad

50

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

CS406,IITDharwad

51

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

CS406,IITDharwad

52

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

CS406,IITDharwad

53

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

CS406,IITDharwad

54

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

CS406,IITDharwad

55

Example 1: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7CS406,IITDharwad

56

Example 1: DFA

a

c

a

1 2 3

c

3,4

b

5

c

6,7

4
a

b

a b

c

b, c

6

7

a

b

b, c

b, c

CS406,IITDharwad

State a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

57

Example 2: NFA -> DFA

0

1

0

A B C

0

NFA OR DFA?

CS406,IITDharwad

58

Example 2: NFA -> DFA

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, we have a choice to

go to either state A or B

0

1

0

A B C

0

CS406,IITDharwad

59

Example 2: NFA -> DFA

0

1

0

A B C

0

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, FA gives us a choice

to go to either state A or state B

A,B {A,B,C} A No In state A,B we have two component states A and

B. From A on input 0, FA takes us to states A and B.

From B on 0 FA takes us to C. So, the set of states

reachable from A,B on input 0 is A,B,C. Similarly,

for input 1, from A FA takes us to A. From B on

input 1, FA gets stuck in an error state.

CS406,IITDharwad

60

Example 2: NFA -> DFA

0

1

0

A B C

0

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, FA gives us a choice

to go to either state A or state B

A,B {A,B,C} A No In state A,B we have two component states A and

B. From A on input 0, FA takes us to states A and B.

From B on 0 FA takes us to C. So, the set of states

reachable from A,B on input 0 is A,B,C. Similarly,

for input 1, from A FA takes us to A. From B on

input 1, FA gets stuck in an error state.

A,B,C {A,B,C} A Yes One of the component states C is final in the FA.

Hence, A,B,C is a final state.

CS406,IITDharwad

61

Example 2: NFA -> DFA

0

1

0

A B C

0

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, FA gives us a choice

to go to either state A or state B

A,B {A,B,C} A No In state A,B we have two component states A and

B. From A on input 0, FA takes us to states A and B.

From B on 0 FA takes us to C. So, the set of states

reachable from A,B on input 0 is A,B,C. Similarly,

for input 1, from A FA takes us to A. From B on

input 1, FA gets stuck in an error state.

A,B,C {A,B,C} A Yes One of the component states C is final in the FA.

Hence, A,B,C is a final state.

Should we consider states B and C in the table?

CS406,IITDharwad

62

Example 2: DFA

0

1

0

A A,B A,B,C

1

1

0

CS406,IITDharwad

State/

char

0 1 Final ?

A {A, B} A No

A,B {A,B,C} A No

A,B,C {A,B,C} A Yes

63

Example 1: DFA

a

c

a

1 2 3

c

3,4

b

5

c

6,7

4
a

b

a b

c

b, c

6

7

a

b

b, c

b, c

What states can be merged?

CS406,IITDharwad

State a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

64

Example 1: Reduced DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

What states can be merged?

CS406,IITDharwad

65

Example: Reduced DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

What states can be merged?

Definition 8 pic source: https://people.eecs.berkeley.edu/~luca/cs172/notemindfa.pdf

CS406,IITDharwad

66

Example: Reduced DFA

What states can be merged?

6 and 7

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 6_7_M 5 -

6,7 - 6,7 6,7

6_7_M - 6_7_M 6_7_M

CS406,IITDharwad

67

Example: Reduced DFA

What states can be merged?

6,7 and 6_7_M

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7_6_7_M 4 -

3,4 6,7_6_7_M 3,4 5

5 6,7_6_7_M 5 -

6,7_6_7_M - 6,7_6_7_

M

6,7_6_7_M

CS406,IITDharwad

68

Example: Reduced DFA

What states can be merged?

4 and 5

State / Char a b c

1 2 - 3

2 3 - 4_5_M

3 - 3,4 4_5_M

4_5_M 6,7_6_7_M 4_5_M -

3,4 6,7_6_7_M 3,4 4_5_M

6,7_6_7_M - 6,7_6_7_M 6,7_6_7_M

CS406,IITDharwad

69

Example: Reduced DFA

a

c

a

1 2 3

c

3,4

b

c
6,7_6_7_M

4,5_Ma

b

a b

c

b, c

CS406,IITDharwad

70

Exercise

• Reduce the DFA

CS406,IITDharwad

71

DFA Reduction (split-node)

• Algorithm

– Start with all final states in one node and all non-final in another

node. Call Split()

void Split(set_of_states* ss) {
do {

• Let S be any merged state corresponding to {s1, …, sn} and
Let ‘c’ be any alphabet

• Let t1, …, tn be the successor states to {s1, …, sn} under
‘c’

• If (t1, …, tn do not all belong to the same merged state) {
Split S into new states such that si and sj remain in the
same merged state if and only if ti and tj are in the same
merged state

} while(more splits are possible)
}

CS406,IITDharwad

72

DFA Reduction (split-node)

• Start with two big nodes

– All final states in one and all

non-final in another

4,7
1,2,3

,5,6

CS406,IITDharwad

73

DFA Reduction (split-node)

• Split 3,6 from 1,2, 3, 5, 6

– 3,6 have common successor

under ‘c’. 1,2,5 have no

successor under ‘c’

4,73,61,2,5

CS406,IITDharwad

74

DFA Reduction (split-node)

• Split 1 from 1,2, 5

– 2 and 5 go to merged state 3,6

under ‘b’. 1 does not.

4,73,62,51

CS406,IITDharwad

75

DFA Reduction (split-node)

• No more splits possible

4,73,62,51

a, d b c

CS406,IITDharwad

76

DFA Program

Slide courtesy: Milind Kulkarni

77

Slide courtesy: Milind Kulkarni

78

Handling Lookahead

• E.g. distinguish between int a and inta

– If the next char belongs to current token, continue

– Else next char becomes part of next token

• Multi-character lookahead?

– E.g. DO I = 1, 100 (loop) vs. DO I = 1.100 (variable

assignment)

– Solutions: Backup or insert special “action” state

CS406,IITDharwad

79

Handling Lookahead

• E.g. distinguish between int a and inta

– If the next char belongs to current token, continue

– Else next char becomes part of next token

• Multi-character lookahead?

– E.g. DO I = 1, 100 (loop) vs. DO I = 1.100 (variable

assignment)

– Solutions: Backup or insert special “action” state

123..44

CS406,IITDharwad

80

Slide courtesy: Milind Kulkarni

81

Slide courtesy: Milind KulkarniCS406,IITDharwad

Discussion

• Why separate class (token type) for each

keyword?

– Efficiency

• Parsers take decisions based on token types.

When decision making not possible, switch to

token values, which are strings. String comparison

is more expensive

– Compatibility with parser generators

• Some parser generators don’t support semantic

predicates

– Autocomplete / Intellisense 82

CS406,IITDharwad

Discussion - Efficiency

83

switch(curToken.type) {
case IF: parse_if_stmt();

break;
..

}

switch(curToken.type) {
case KEYWORD: if(curToken.value==“if”);

parse_if_stmt();
..

}

CS406,IITDharwad

Discussion - Compatibility

84

statement : if condition body (else body)? fi
if: {current_token.value == "if"} KEYWORD ;
else: {current_token.value == "else"} KEYWORD ;
fi: …
KEYWORD: IF | ELSE | FI

statement : IF condition body (ELSE body)? FI

CS406,IITDharwad

85

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 3 (Sections: 3.1, 3,3, 3.6 to 3.9)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 3 (Sections 3.1 to 3.4, 3.6, 3.7)

Suggested Reading

CS406,IITDharwad

