
CS406: Compilers
Spring 2022

Week 13:

More Dataflow Analysis – Uninitialized Variables,
Available Expressions, Reaching Definitions

Register Allocation

CS406, IIT Dharwad 1

Uninitialized Variables

• Goal: determine a set of variables that are possibly
uninitialized at the beginning and end of a basic block.
– E.g. to know if x==null?

• Direction of the analysis:
– How does information flow w.r.t. control flow?

• Join operator:
– What happens at merge points? E.g. what operator to use Union or

Intersection?

• Transfer function:
– Define sets UninitIn(b), UninitOut(b), Init(b), Uninit(b)

• Initializations?

CS406, IIT Dharwad 2

CS406, IIT Dharwad 3

Worksheet

Available Expressions

• Goal: determine a set of expressions that have already been
computed.
– E.g. to perform global CSE

• Direction of the analysis:
– How does information flow w.r.t. control flow?

• Join operator:
– What happens at merge points? E.g. what operator to use Union or

Intersection?

• Transfer function:
– Define sets AvailIn(b), AvailOut(b), Compute(b), Kill(b)

• Initializations?

CS406, IIT Dharwad 4

CS406, IIT Dharwad 5

CS406, IIT Dharwad 6

CS406, IIT Dharwad 7

What is this piece
of code doing?

CS406, IIT Dharwad 8

Intermediate code (assuming int is 4 bytes):
(Ignore the temporary counter value for now)

available expression
{}

{“4*i”}

S1 ={“4*i”, “a+t6”}

S2 =S1 U {“4*j”}

set S1

S3 =S2 U {“a+t8”}

set S3

set S3

set S3

t7 = t6

a[t6] = t9

t10 = t8

a[t8] = x

Can be rewritten:

copy propagation

CS406, IIT Dharwad 9

Intermediate code (assuming int is 4 bytes):
(Ignore the temporary counter value for now)

available expression
{}

{“4*i”}

S1 ={“4*i”, “a+t6”}

S2 =S1 U {“4*j”}

set S1

S3 =S2 U {“a+t8”}

set S3

set S3

set S3

t7 = t6

a[t6] = t9

t10 = t8

a[t8] = x

apply dead-code elim.

CS406, IIT Dharwad 10

Intermediate code
(after local CSE+copy prop.+dead-code elim.)

CS406, IIT Dharwad 11

Intermediate code (assuming int is 4 bytes):

(assume next temporary counter value=11)

t12=t11

t15=t13
a[t13]=x

a[t11]=x

CS406, IIT Dharwad 12

Intermediate code (assuming int is 4 bytes):

after dead-code
elim.

t12=t11

t15=t13
a[t13]=x

a[t11]=x

CS406, IIT Dharwad 13

t11=4*I
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

Intermediate code
(after local CSE+copy prop.+dead-code elim.)

• CFG for quicksort

CS406, IIT Dharwad 14

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 15

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 16

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

merge point

initializing for CSE

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 17

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

initializing for CSE
Set U={“m-1”,
“4*n”,
“a+t1”,
“4*i”,

“i+1”,
”a+t2”,
”j-1”,
”4*j”,
”a+t4”,
”a+t6”,
”a+t8”,
”a+t7”,
”a+t11”,
”a+t13”
}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 18

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

compute(B1)
aka. gen(B1) =
{ “m-1”, “4*n”,
“a+t1”}

kill(B1) = {
“a+t1”}

Out(B1) =
gen(B1) U IN(B1) – kill(B1)

Out(B1) =
{ “m-1”,
“4*n”,
“a+t1”
}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 19

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B2) = {
“4*i”, “a+t2”}

kill(B2) = {
“4*i”, “a+t2”}

Initially, IN(B2) =
set U ∩ OUT(B1)
={“m-1”,”4*n”,
”a+t1”}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 20

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B2) = {
“4*i”, “a+t2”}

kill(B2) = {
“4*i”, “a+t2”}

Initially, OUT(B2) =
={IN(B1) U “4*i”,
”a+t2”}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 21

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B3) = {
“4*j”, “a+t4”}

kill(B3) = {
“4*j”, “a+t4”}

Initially, IN(B3) =
={U ∩ OUT(B2)} =
OUT(B2)

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 22

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B3) = {
“4*j”, “a+t4”}

kill(B3) = {
“4*j”, “a+t4”}

Initially, OUT(B3) =
={“4*j”, “a+t4” U
OUT(B2)}

CS406, IIT Dharwad

23

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B5) = {
“4*i”, “a+t6”,
“4*j”, “a+t8”}

kill(B5) = {
“a+t8”, “a+t6”}

Initially, IN(B5) =
=OUT(B4)=OUT(B3)

IN(B5)=“4*j”, “a+t4”, “4*i”, “a+t2”, “m-1”, “4*n”, “a+t1”

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t6=t2
x=a[t2]
t8=4*j
t9=a[t8]
a[t2]=t9
a[t8]=x
goto B2

x=a[t2]
t8=t4
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=t3
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=t3
a[t2]=t5
a[t4]=x
goto B2

Dataflow Analysis – Problem Categorization

• All path problem:
– we want the property to hold at all the paths reaching a program

point.

• Any path problem:
– we want the property to hold at some path reaching a program point.

Orthogonal to the above categorization we can have:

• Forward flow problem:
– Transfer of information done along the direction of the control flow

• Backward flow problem:
– Transfer of information done opposite to the direction of the control

flow

CS406, IIT Dharwad 24

Reaching Definitions - Example

• Goal: to know where in a program each
variable x may have been defined when
control reaches block b

• Definition d reaches block b if there is a
path from point immediately following d
to b, such that the variable defined in d is
not redefined / killed along that path

1: i=m-1
2: j=n
3: a=u1

Out(b) = gen(b) ڂ (In(b) – kill(b))

//set that contains all statements
that may define some variable x in
b. E.g. gen(1:a=3;2:a=4)={2}

//set that contains all statements
that define a variable x that is
also defined in b. E.g.
kill(1:a=3; 2:a=4)={1,2} 25

In(b) =ڂi ∈Pred(b)Out(i)

entry

4: i=i+1
5: j = j -1

7: i=u3

exit

6: i=u3

CS406, IIT Dharwad

26CS406, IIT Dharwad

27CS406, IIT Dharwad

28CS406, IIT Dharwad

29CS406, IIT Dharwad

30CS406, IIT Dharwad

