
CS406: Compilers
Spring 2022

Week 12: Dataflow Analysis – Constant Propagation, 
Exercises

CS406, IIT Dharwad 1



Recap: Liveness

• Variables are live if there exists 
some path leading to its use

• Start from exit block and 
proceed backwards against the 
control flow to compute

A := 1
A = B

B := 1 C := 1

D := A+B

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

//set that contains all variables 
used by block b 

//set that contains all 
variables defined by block b 

2

LiveOut(b) =ڂi ∈Succ(b) LiveIn(i)

entry

exit

CS406, IIT Dharwad



3

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

Original CFG CFG with edges reversed (and 
initialized) for backwards analysis: is X 
live? (F=false, T=true)

F

F

F
F

F

F

F

F

Recap: Liveness

CS406, IIT Dharwad



4

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

F

F
F

F

F

F

F

X must be live here
(refer week11 slide) 

Recap: Liveness

CS406, IIT Dharwad



5

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

F
F

F

F

F

F

X must be live here
(refer week11 slide) 

Recap: Liveness

CS406, IIT Dharwad



6

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

F

F

F

F

X must be live here
(refer week11 slide) 

Recap: Liveness

CS406, IIT Dharwad



7

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X must be live here
(refer Week11 slide) 

Recap: Liveness

CS406, IIT Dharwad



8

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (refer Week11 slide). 
No change in information. 

Recap: Liveness

CS406, IIT Dharwad



9

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (refer Week11 slide). 
No change in information.

Recap: Liveness

CS406, IIT Dharwad



10

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F X dead here (refer Week11 slide). 
No change in information.

Recap: Liveness

Exercise: Repeat for Z and N CS406, IIT Dharwad



Constant Propagation

11

X = 1
Y = 1 + 2
if( Y> X)

Y = 5
..

X = 1
Y = X + 2
if( Y> X)

Y = 5
..

Constant Propagation
X = 1
Y = 3
if( Y> X)

Y = 5
..

Using Constant Propagation, we can 
optimize further: do constant folding

CS406, IIT Dharwad



Constant Propagation

12

X = 1
Y = 3
if( Y> X)

Y = 5
..

X = 1
Y = X + 2
if( Y> X)

Y = 5
..

X = 1
Y = 3 //dead code

if(true)
Y = 5

Using Liveness information leads to further 
optimizations: Dead Code Elimination

Constant Propagation

CS406, IIT Dharwad



Constant Propagation

• Bigger problem size:
– Which lines using X could be replaced with a 

constant value?  (apply only constant 
propagation)

– How can we automate to find an answer to 
this question?

13

1. X := 2
2. Label1: 
3. Y := X + 1
4. if Z > 8 goto Label2
5. X := 3
6. X := X + 5
7. Y := X + 5
8. X := 2
9. if Z > 10 goto Label1
10.X := 3
11.Label2:
12.Y := X + 2
13.X := 0
14.goto Label3
15.X := 10
16.X := X + X
17.Label3:
18.Y := X + 1

CS406, IIT Dharwad



Constant Propagation

• Problem statement:

– Replace use of a variable X by a constant K

• Requirement:

– property: on every path to the use of X, the last 
assignment to X is: X=K

Same as: “is X=K at a program point?”
At any program point where the above property holds, we can apply 
constant propagation.

CS406, IIT Dharwad 14



Constant Propagation

• Associate with X one of the following values:

• Idea of symbolic execution: at all program points, 
determine the value of X

CS406, IIT Dharwad 15

Value Meaning

⊥ (“bottom”) This statement never executes

K (“constant”) X = K

⊤ (“top”) X is not a constant



Constant Propagation

CS406, IIT Dharwad 16

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1X=1 X=1

X=1

X=4
X=1

X=⊤

X=⊤

If X=K at some program point, we can apply constant propagation (replace the 
use of X with value of K at that program point) 



Constant Propagation

• Determining the value of X at program points:

– Just like in Liveness Computation in a CFG, the information 
required for constant propagation flows from one 
statement to adjacent statement

– For each statement s, compute the information just 
before and after s. C is the function that computes the 
information: 

C(X,s,flag)
//if flag=IN, before s what is the value of X

//if flag=OUT, after s what is the value of X

• Transfer function (pushes / transfers information from one 
statement to another)

CS406, IIT Dharwad 17



Constant Propagation

• Determining the value of X at program points (Rule 1):

CS406, IIT Dharwad 18

…

If X=⊤ at exit of any of the predecessors, X=⊤ at the entrance of S

… …

s

X=⊤

p1 p2 p3

X=⊤

if C(pi,s,OUT)=⊤

for any i, then C(X,s,IN)=⊤



Constant Propagation

• Determining the value of X at program points (Rule 2):

CS406, IIT Dharwad 19

…

If X=K1 at one predecessor and X=K2 at another predecessor and 
K1 ≠ K2, then  X=⊤ at the entrance of S

… …

s

X=1

p1 p2 p3

X=⊤

if C(pi,s,OUT)=K1 and C(pj,s,OUT)=K2 and K1 ≠ K2  then C(X,s,IN)=⊤

X=4



Constant Propagation

• Determining the value of X at program points (Rule 3):

CS406, IIT Dharwad 20

…

If X=K at some of the predecessors and X= ⊥ at all other 
predecessors, then  X=K at the entrance of S

… …

s

X=1

p1 p2 p3

X=1

if C(pi,s,OUT)=K or ⊥ for all i then C(X,s,IN)= K

X=⊥X=1



Constant Propagation

• Determining the value of X at program points (Rule 4):

CS406, IIT Dharwad 21

…

If X= ⊥ at all predecessors, then  X= ⊥ at the entrance of S

… …

s

X= ⊥

p1 p2 p3

X= ⊥

if C(pi,s,OUT)=⊥ for all i then C(X,s,IN)= ⊥

X=⊥X= ⊥



Constant Propagation

• Determining the value of X at program points (Rule 5):

CS406, IIT Dharwad 22

If X= ⊥ at entrance of s, then  X= ⊥ at the exit of S

s
X= ⊥

if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥

X= ⊥



Constant Propagation

• Determining the value of X at program points (Rule 6):

CS406, IIT Dharwad 23

No matter what the value of X is at entrance of s(X:=K), X=K at the 
exit of s

X=4

C(X,s(X:=K),OUT)=K

X=4

But previous slide said if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥. So, we give 

priority to this.



Constant Propagation

• Determining the value of X at program points (Rule 7):

CS406, IIT Dharwad 24

In s, assignment to X is any complicated expression (not a constant 
assignment).

X=f(..)

C(X,s(X:=f()),OUT)=⊤

X=⊤

But earlier slide said if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥. So, we give 

priority to this.



Constant Propagation

• Determining the value of X at program points (Rule 8):

CS406, IIT Dharwad 25

Value of X remains unchanged before and after s(Y:=..) when s doesn’t 
assign to X and X ≠ Y

Y=…

C(X,s(Y:=..),OUT)=C(X,s(Y:=..),IN)

E.g. X:=1

E.g. X:=1



Constant Propagation

• Putting it all together

1. For entry s in the program, initialize C(X,s,IN)=⊤ and 
initialize C(X,s,IN)=C(X,s,IN)=⊥ everywhere else

2. Repeat until all program points (i.e. any s) satisfy rules 1-8 
1. Pick s in the CFG that doesn’t satisfy any one of rules 1-8 and 

update information.

CS406, IIT Dharwad 26



Constant Propagation

• Putting it all together

CS406, IIT Dharwad 27

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=⊥

X=⊥ X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥



Constant Propagation

• Putting it all together

CS406, IIT Dharwad 28

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊤

X=⊤

X=1

X=1

X=1

X=4

X=1



Constant Propagation - Loops

CS406, IIT Dharwad 29

X := 1
B>0

Y := Z+W Y := 0

Y := 2*X
A<B

entry to basic block

exit from basic block

X=⊤

X=⊥

X=⊥ X=⊥X=⊥

X=⊥

X=⊥X=⊥

X=⊥

X=⊥



Ordering of information: Generalizing

• We have been executing with symbols ⊥, ⊤ , and K. 
These are called abstract values

• Order these values as:

⊥ < K < ⊤

Can also be thought of as an ordering from least 
information to most information

Pictorially:

⊤

⊥
CS406, IIT Dharwad 30

..       -1        0        1        ..



Ordering of information: Generalizing

• Least Upper Bound (lub) : smallest element 
(abstract value) that is greater than or equal to 
values in the input

– E.g. lub ⊥, ⊥ =⊥, lub ⊤, ⊥ = ⊤,lub −1, 1 = ⊤, 
lub 1 ⊥ =?

– Rewriting rules 1-4: C(X,s,IN)=lub{C(pi,s,OUT) for all 
predecessors i)}

– Also called as join operator. Written as: A ⊔ B

CS406, IIT Dharwad 31



Ordering of information: Generalizing

• Recall that in determining information at all program 
points: 
“2. Repeat until all program points (i.e. any s) satisfy rules 1-8 

- Pick s in the CFG that doesn’t satisfy any one of rules 1-8 and 
update information. “

– How do we know that this terminates?
• lub ensures that the information changes from lower value to 

higher value

• In the constant propagation algorithm:

– ⊥ can change to constant and then to ⊤

– ⊥ can change to ⊤

– C(X, s, flag) can change at most twice

CS406, IIT Dharwad 32



Constant Propagation

• Exercise: what is the complexity of our constant 
propagation algorithm?

= NumS* 4 ( NumS = number of statements in the program). 

- Per program point, we evaluate the C function. 

- The C function changes value at most two times (initialized to ⊥ first and 
then could change to K and then to ⊤).

- There are two program points (entry/IN and exit/OUT) for every statement.

CS406, IIT Dharwad 33

This is the complexity of the analysis per variable

How do we do the analysis considering all variables that exist in the program?



CS406, IIT Dharwad 34

Constant Propagation (Multiple Variables)

V



CS406, IIT Dharwad 35

Constant Propagation (Multiple Variables)



CS406, IIT Dharwad 36



CS406, IIT Dharwad 37



CS406, IIT Dharwad 38



CS406, IIT Dharwad 39



CS406, IIT Dharwad 40



CS406, IIT Dharwad 41



CS406, IIT Dharwad 42



CS406, IIT Dharwad 43



CS406, IIT Dharwad 44



Recap: Constant Propagation

CS406, IIT Dharwad 45



CS406, IIT Dharwad 46



CS406, IIT Dharwad 47



CS406, IIT Dharwad 48



CS406, IIT Dharwad 49



CS406, IIT Dharwad 50



Exercises

• Analysis of uninitialized variables

• Analysis of available expressions

CS406, IIT Dharwad 51

• What is the direction of analysis?
• What is the transfer function? 


