CS406: Compilers

Spring 2022

Week 12: Dataflow Analysis — Constant Propagation,
Exercises

Recap: Liveness

* Variables are live if there exists
some path leading to its use

e Start from exit block and
proceed backwards against the
control flow to compute

LiveOut(b) = Ujesyceep) Liveln(i)
LiveIn(b) = LiveUse(b) U (LiveOut(b) - Def(b))

T T

//set that contains all variables //set that contains all
used by block b variables defined by block b

CS406, IIT Dharwad 2

Recap: Liveness

TF
READ(Z) READ(Z)

F
READ(N) READ(N)

F

X =2
X =2
F
X < N? F

////’—el f///’——— X < N?

DR

X=X+ Z X=X+ 17 F

PRINT(X) PRINT(X)

TF

Original CFG

CFG with edges reversed (and
initialized) for backwards analysis: is X
live? (F=false, T=true)

Recap: Liveness

T F

READ(Z)

F

READ(N)

PRINT(X)

T

Liveness in a CFG

P

X must be live here (i.e.
before the statement)

* Define a set LiveUse(b), where b is a basic
block, as the set of all variables that are used
within block b. LiveIn(b) 2 LiveUse(b)

X must be live here
(refer week11 slide)

CS406, IIT Dharwad

Recap: Liveness

T F

READ(Z)

F

READ(N)

PRINT(X)

T

Liveness in a CFG

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Def(b))

X must be live here
(refer week11 slide)

X must be live here
(refer week11 slide)

Recap: Liveness

T F

READ(Z)

F

READ(N)

F

X =2

T

\r‘ X < N?
X+ZJFA !
PRINT(X)

CS406, IIT Dharwad

T

Liveness in a CFG

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Def(b))

Recap: Liveness

T F

READ(Z)

F

READ(N)

F

X =2

-

Tr‘ X < N?
X =X + Z ;ﬁﬁ? !

X must be live here

PRINT(X)

(refer Week11 slide)

CS406, IIT Dharwad

T

Liveness in a CFG

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Def(b))

Recap: Liveness

T F

READ(Z)
F
READ(N)
F
X =2
-
X < N?
T
PRINT(X)

T

X dead here (refer Week11 slide).
No change in information.

Liveness in a CFG

-

= Given that e does not use
E:E X, X is definitely dead here
(i.e. before the statement).

block, as: the set of all variables live at the
entrance of a basic block

Recap: Liveness

T F

READ(Z)
=
READ(N)
F
X =2
-
X < N?
T
PRINT(X)

T

X dead here (refer Week11 slide).
No change in information.

Liveness in a CFG - Observation

|: X not live here / X is live here
o =Y
< If Xis not live here / X is live here

*|f a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

Recap: Liveness

. F

READ(Z)

F

READ(N)

F

X =2

.

ﬁ X < N?
X+ZJTA !
PRINT(X)

T

X dead here (refer Week11 slide).
No change in information.

Liveness in a CFG - Observation

|: X not live here / X is live here
o =Y
< If Xis not live here / X is live here

*|f a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

Exercise: Repeat for Zand N

Constant Propagation

X =1 X =1
Y=X+2 > Y=1+2
if(Y> X) if(Y> X)
Y =5 Y =5
Constant Propagation X =1
|:> Y = 3
if(Y> X)
Y =5

Using Constant Propagation, we can
optimize further: do constant folding

Constant Propagation

X =1 X =1
Y=X+2 > Y=3
if(Y> X) if(Y> X)
Y =5 Y =5
Constant Propagation -
|:> ¥—=3 //dead code
if(true)
Y =5

Using Liveness information leads to further
optimizations: Dead Code Elimination

CS406, IIT Dharwad 12

Constant Propagation

Bigger problem size:

— Which lines using X could be replaced with a
constant value? (apply only constant
propagation)

— How can we automate to find an answer to
this question?

1. X := 2

2. Labell:

3. Y : =X+ 1

4. if Z > 8 goto Label2
5. X := 3

6. X := X + 5

7.Y =X+ 5

8. X := 2

9. if Z > 10 goto Labell
10.X := 3

11.Label2

12.Y := X + 2

13.X := 0

14.goto Label3

15.X := 10

16.X (= X + X
17.Label3:

18.

Y (=X +1

Constant Propagation

* Problem statement:

— Replace use of a variable X by a constant K

* Requirement:

— property: on every path to the use of X, the last
assignment to X is: X=K
Same as: “is X=K at a program point?”

At any program point where the above property holds, we can apply
constant propagation.

Constant Propagation

e Associate with X one of the following values:

1 (“bottom”) This statement never executes
K (“constant”) X =K

T (“top”) X is not a constant

* |dea of symbolic execution: at all program points,
determine the value of X

CS406, IIT Dharwad

15

Constant Propagation

entry to basic block

exit from basic block

If X=K at some program point, we can apply constant propagation (replace the
use of X with value of K at that program point)

CS406, IIT Dharwad 16

Constant Propagation

 Determining the value of X at program points:

— Just like in Liveness Computation in a CFG, the information
required for constant propagation flows from one
statement to adjacent statement

— For each statement s, compute the information just
before and after s. Cis the function that computes the
information:

C(X,s,flag)
//1f flag=IN, before s what is the value of X

//1if flag=0UT, after s what is the value of X

» Transfer function (pushes / transfers information from one
statement to another)

Constant Propagation

* Determining the value of X at program points (Rule 1):

If X=T at exit of any of the predecessors, X=T at the entrance of S

if C(p;,s,0UT)=T
foranyi, then C(X,s,IN)=T

Constant Propagation

* Determining the value of X at program points (Rule 2):

If X=K1 at one predecessor and X=K2 at another predecessor and
K1 # K2, then X=T at the entrance of S

if C(p;,s,0UT)=K1 and C(p;,s,0UT)=K2 and K1 #K2 then C(X,s,IN)=T

Constant Propagation

 Determining the value of X at program points (Rule 3):
pl p2 p3

X=1 X=1 l /x=1

X=1
S

If X=K at some of the predecessors and X= L at all other
predecessors, then X=K at the entrance of S

if C(p;,s,0UT)=K or Lforalli thenC(X,s,IN)= K

Constant Propagation

 Determining the value of X at program points (Rule 4):

If X= 1 at all predecessors, then X= 1 at the entrance of S

if C(p;,s,0UT)=L foralli thenC(X,s,IN)= 1L

Constant Propagation

* Determining the value of X at program points (Rule 5):

wn Ihm<———

|

X= 1
If X= 1 at entrance of s, then X= 1 at the exit of S

if C(X,s,IN)=LthenC(X,s,0UT)= 1

Constant Propagation

 Determining the value of X at program points (Rule 6):

|

X=4

|

X=4
No matter what the value of X is at entrance of s (X:=K), X=K at the
exit of s

C(X,s(X:=K),0UT)=K
But previous slide said if C(X,s,IN)=1thenC(X,s,0UT)= Ll.So, we give
priority to this.

Constant Propagation

 Determining the value of X at program points (Rule 7):

|

X=F(..)

|

X=T

In s, assignment to X is any complicated expression (not a constant

assignment). C(X, s(X:=F()),0UT)=T

But earlier slide said if C(X,s,IN)=1thenC(X,s,0UT)= L.So, we give
priority to this.

Constant Propagation

 Determining the value of X at program points (Rule 8):

l E.g. X:=1

Y=

lE.g. X:=1

Value of X remains unchanged before and after s(Y:=..) when s doesn’t
assigntoXand X #Y

C(X,s(Y:=..),0UT)=C(X,s(Y:=..),IN)

Constant Propagation

e Putting it all together
1. For entry s in the program, initialize C(X,s,IN)=T and
initialize C(X,s,IN)=C(X,s,IN)=1 everywhere else
2. Repeat until all program points (i.e. any s) satisfy rules 1-8

1. Pick sin the CFG that doesn’t satisfy any one of rules 1-8 and
update information.

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS406, IIT Dharwad

27

Constant Propagation

e Putting it all together

entry to basic block

X=T1

X=T|

exit from basic block

CS406, IIT Dharwad

28

Constant Propagation - Loops

entry to basic block

exit from basic block

CS406, IIT Dharwad

29

Ordering of information: Generalizing

* We have been executing with symbols 1, T, and K.
These are called abstract values

e Order these values as:
1 <K< T

Can also be thought of as an ordering from least
information to most information

Pictorially:

Ordering of information: Generalizing

e Least Upper Bound (lub) : smallest element
(abstract value) that is greater than or equal to
values in the input

— E.g. lub(L, 1) =1, lub(T, L) = T,lub(-1,1) =T,
lub(1 1) =?

— Rewriting rules 1-4: C(X,s,IN)=1ub{C(p;,s,0UT) for all
predecessors i)}

— Also called as join operator. Writtenas: A LI B

Ordering of information: Generalizing

e Recall that in determining information at all program
points:

“2. Repeat until all program points (i.e. any s) satisfy rules 1-8
- Pick s in the CFG that doesn't satisfy any one of rules 1-8 and
update information. “

— How do we know that this terminates?

* |ub ensures that the information changes from lower value to
higher value
* In the constant propagation algorithm:
— 1 can change to constantand thento T
— 1l canchangeto T
— C(X, s, flag) can change at most twice

Constant Propagation

Exercise: what is the complexity of our constant
propagation algorithm?

= NumS* 4 (NumS = number of statements in the program).

- Per program point, we evaluate the C function.

- The C function changes value at most two times (initialized to L first and
then could change to K and then to T).

- There are two program points (entry/IN and exit/OUT) for every statement.

This is the complexity of the analysis per variable

How do we do the analysis considering all variables that exist in the program?

Constant Propagation (Multiple Variables)

X

e Keep track of the symbolic value of T[T
a variable at every program point
(on every CFG edge)

Xx =1

® State vector V

® What should our initial value be?

® Starting state vector is all T

e (Can’t make any assumptions
about inputs — must assume |
NOt constant merge

iy
® Everything else starts as L, since :
we have no information about Y
1L

the variable at that point

end

Constant Propagation (Multiple Variables)

® For each statement t = e evaluate T[T
e using Vi, update value for t and - 1
propagate state vector to next ——
statement '
y=X+2
® What about switches? . I
. X ?
® |[feis true or false, propagate Vin @ ——
to appropriate branch
I y =5
e What if we can’t tell? / ——
® Propagate Vi to both merge
branches, and symbolically N
execute both sides .
® What do we do at merges? al

end

Handling merges

e Have two differentVj,s coming from two
different paths

® Goal: want new value for Vi, to be safe
(shouldn’t generate wrong information), and we
don’t know which path we actually took

® Consider a single variable. Several situations:

® V=1 V=% Vg, =F*

e V,

® V,=constant X,V = constanty = Vo, = T

® Vi=TVa=%2Vou=T //l\\
® Generalization:

o \\| a

CS406, IIT Dharwad

constant X,V2 = x = Vout = X

36

Result: worklist algorithm

® Associate state vector with each edge of CFG, initialize all
values to L, worklist has just start edge

® While worklist not empty, do:

Process the next edge from worklist
Symbolically evaluate target node of edge using input state vector

If target node 1s assignment (x = e), propagate Vin[eval(e)/x] to
output edge

If target node 1s branch (e?)

If eval(e) 1s true or false, propagate Vin to appropriate output
edge

Else, propagate Vin along both output edges
If target node 1s merge, propagate join(all Vin) to output edge
If any output edge state vector has changed, add i1t to worklist

CS406, IIT Dharwad

37

Running example

T

X =1

CS406, IIT Dharwad

Running example

X y
TIT
X =1
T
y=X+12
, 113
1L y =5
merge
115
.Y ...
115
end

39

What do we do about loops?

® Unless a loop never executes, symbolic execution looks like
it will keep going around to the same nodes over and over

again

® |[nsight: if the input state vector(s) for a node don’t change,
then its output doesn’t change

® |[f input stops changing, then we are done!

® Claim:input will eventually stop changing. Why?

CS406, IIT Dharwad

40

Loop example

First time through loop, x = |
Subsequent times,x = T

X =X + 1

Complexity of algorithm

® V =# of variables, E = # of edges

® Height of lattice = 2 — each state vector can be updated at
most 2 *V times.

® So each edge is processed at most 2 *V times, so we
process at most 2 * E *V elements in the worklist.

® (Cost to process a node: O(V)

® Overall, algorithm takes O(EV2) time

CS406, IIT Dharwad 42

Question

® (Can we generalize this algorithm and use it for more
analyses?

CS406, IIT Dharwad

43

Constant propagation

® Step |: choose lattice (which values are you going to track
during symbolic execution)?

® Use constant lattice

® Step 2: choose direction of dataflow (if executing symbolically,
can run program backwards!)

® Run forward through program
® Step 3: create transfer functions

® How does executing a statement change the symbolic state?
® Step 4: choose confluence operator

® What do do at merges? For constant propagation, use join

CS406, IIT Dharwad

44

Recap: Constant Propagation

How can we find constants/’

® |deal: run program and see which variables are constant

® Problem: variables can be constant with some inputs, not
others — need an approach that works for all inputs!

® Problem: program can run forever (infinite loops?) —
need an approach that we know will finish

® |dea: run program symbolically

® Essentially, keep track of whether a variable is constant
or not constant (but nothing else)

CS406, IIT Dharwad

46

Overview of algorithm

® Build control flow graph

® We'll use statement-level CFG (with merge nodes) for
this

® Perform symbolic evaluation
® Keep track of whether variables are constant or not

® Replace constant-valued variable uses with their values, try
to simplify expressions and control flow

CS406, IIT Dharwad

47

Build CFG

X =1
X=l; y=X+2
y = X + 2,
if (y > x) then y = 5; @x?
e Y e

Symbolic evaluation

® |dea:replace each value with a
symbol

® constant (specify which), no

T
information, definitely not
constant /‘\\
® Can organize these possible 2101 2 .
values in a [attice \\\'//
L

® Set of possible values,
arranged from least
information to most
information

CS406, IIT Dharwad 49

Symbolic evaluation

® FEvaluate expressions symbolically:
eval(e,Vin)

e |[f e evaluates to a constant,
return that value. If any input is
T (or L), return T (or 1)

® Why!
® Two special operations on lattice

® meet(a, b) — highest value less
than or equal to bothaand b

® join(a, b) — lowest value greater
than or equal to bothaand b

CS406, IIT Dharwad

PN
NN\

Join often writtenasa LU b
Meet often writtenasa b

50

Exercises

* Analysis of uninitialized variables

* Analysis of available expressions

* What is the direction of analysis?
e What s the transfer function?

