
CS406: Compilers
Spring 2022

Week 11: Loop Optimization, ..

CS406, IIT Dharwad 1

Optimize Loops

• Example - Code Motion

Should be careful while doing optimization of
loops

2

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop.

3

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

4

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

• What if I != 0 but loop executes zero times?

5

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimization Criteria - Safety and
Profitability

• Safety - is the code produced after optimization
producing same result?

• Profitability - is the code produced after optimization
running faster or uses less memory or triggers lesser
number of page faults etc.

6

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

• E.g. moving I out of the loop
introduces exception (when I=0)

• E.g. if the loop is executed zero
times, moving A(j) := 10/I
out is not profitable

CS406, IIT Dharwad

Optimize Loops – Code Generation

• The outline of code generation for ‘for’
loops looked like this:

CS406, IIT Dharwad 7

for (i=0; i<=255;i++) {
<stmt_list>

}

code for i=0;
LOOP: code for i<=255

jump0 OUT
code for <stmt_list>

INCR: code for i++
jump LOOP

OUT:

Naïve code generation

Question: why naïve is not good?

Optimize Loops – Code Generation

• What happens when ub is set to the maximum possible integer
representable by the type of i?

CS406, IIT Dharwad 8

for (i=0; i<=255;i++) {
<stmt_list>

}

code for i=0;
code for lb=1, ub=255
code for lb<=ub
jump0 OUT

LOOP: code for <stmt_list>
code for lb=ub
jump1 OUT

INCR: code for i++
jump LOOP

OUT:

Better code: code for i=0;
compute lb, ub
code for lb<=ub
jump0 OUT
assign index=lb
assign limit=ub

LOOP: code for <stmt_list>
code for index=limit
jump1 OUT

INCR: code for increment index
jump LOOP

OUT:

generalizing:

Optimize Loops -Identifying Invariant
Expressions

• How do we identify expressions that can be
moved out of the loop?
• LoopDef = {} set of variables defined (i.e. whose

values are overwritten) in the loop body

• LoopUse = { } ‘relevant’ variables used in
computing an expression

9

Mark_Invariants(Loop L) {
1. Compute LoopDef for L
2. Mark as invariant all expressions,

whose relevant variables don’t belong
to LoopDef

}
CS406, IIT Dharwad

Optimize Loops -Identifying Invariant
Expressions

• Example

10

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopDef{}

{A, K}
{A, J, K}

{A, J, K, I}

CS406, IIT Dharwad

Optimize Loops -Identifying Invariant
Expressions

• Example

11

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopUse{}

{I,J}
{I}

{}

CS406, IIT Dharwad

Optimize Loops -Identifying Invariant
Expressions

• Example

12

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant
Expressions

{ I*J,
Addr(A[i][j])}

*Assuming row-major ordering of storageCS406, IIT Dharwad

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =
Addr(A)+(I*10000)-10000+(J*100)-100+K-1

Optimize Loops -Identifying Invariant
Expressions

• Example

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =

Addr(A)+(I*10000)-10000+(J*100)-100+K-1

13

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant
Expressions

{ Addr(A[i]) }

*Assuming row-major ordering of storageCS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Move the invariant expressions identified

14

Factor_Invariants(Loop L) {
Mark_Invariants(L);
foreach expression E marked an invariant:

1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=E in L’s header code

// If loop is known to execute at least once,
insert T:=E before LOOP:

}

CS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Example

15

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

CS406, IIT Dharwad

//Invariant Expressions

Optimize Loops -Factoring Invariant
Expressions

• Example

16

for I = 1 to 100
for J = 1 to 100

temp1=A[I][J]
temp2=I*J
for K = 1 to 100

temp1[K] = temp2*K

CS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Example

17

for I = 1 to 100
temp3=A[I]
for J = 1 to 100

temp1=temp3[J]
temp2=I*J
for K = 1 to 100

temp1[K] = temp2*K

CS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

18

for (...) {
if(*)

a = 100
}
c=a

Cannot move a=100 because it does not dominate c=a i.e. there
is one path (when if condition is false) c=a can be executed
/’reached’ without going to a=100

CS406, IIT Dharwad

Case I: We can move t = a op b if the statement dominates all
loop exits where t is live

A node bb1 dominates node bb2 if all paths to bb2 must go
through bb1

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

19

for (...) {
if(*)

a = 100
else

a = 200
}

Multiple definition of a
CS406, IIT Dharwad

Case II: We can move t = a op b if there is only
one definition of t in the loop

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

20

a=5
for (...) {

a = 4+b
}
c=a

Definition of a in a=5 reaches c=a, which is
defined after the loop

CS406, IIT Dharwad

Case III: We can move t = a op b if t is not defined
before the loop, where the definition reaches t’s use
after the loop

Optimize Loops –Strength Reduction

• Like strength reduction in peephole optimization
• E.g. replace a*2 with a<<1

• Applies to uses of induction variable in loops
• Basic induction variable (I) – only definition within

the loop is of the form I = I ± S, (S is loop
invariant)

I usually determines number of iterations

• Mutual induction variable (J) – defined within the
loop, its value is linear function of other induction
variable, I, such that

J = I * C ± D (C, D are loop invariants)

21CS406, IIT Dharwad

Optimize Loops –Strength Reduction

22

strength_reduce(Loop L) {
Mark_Invariants(L);
foreach expression E of the form I*C+D where I is

L’s loop index and C and D are loop invariants
1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=Io*C+D, where Io is the initial value of the

induction variable, immediately before L
4. Insert T:=T+S*C, where S is the step size, at the end of

L’s body
}

CS406, IIT Dharwad

Optimize Loops –Strength Reduction

• Suppose induction variable I takes on values Io,
Io+S, Io+2S, Io+3S... in iterations 1, 2, 3,
4, and so on…

• Then, in consecutive iterations, Expression
I*C+D takes on values

• The expression changes by a constant S*C

• Therefore, we have replaced a * and + with a +

23

Io*C+D
(Io+S)*C+D = Io*C+S*C+D
(Io+2S)*C+D = Io*C+2S*C+D
... ...

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Example (Applying to innermost loop)

24

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K
. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

//S=1
//C=temp2

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

25

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K

. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

// Induction var = J
// S = 1
// Expression = I * J

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

26

.... . .
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I

...

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Further strength reduction possible?

27

for I=1 to 100
temp3=Addr(A[i])
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I
CS406, IIT Dharwad

Optimize Loops – Loop Unrolling

28CS406, IIT Dharwad

Optimize Loops - Summary

29CS406, IIT Dharwad

Slide Courtesy: Milind Kulkarni
CS406, IIT Dharwad 30

Slide Courtesy: Milind Kulkarni
CS406, IIT Dharwad 31

Dataflow Analysis - Common Traits

Common requirement among global optimizations:

• Know a particular property X at a program point
(There is a program point one before a statement and one
after a statement)

• Say that property X definitely holds.

OR

• Don’t know if property X holds or not (okay to be
conservative)

This requires the knowledge of entire program

32CS406, IIT Dharwad

Slide Courtesy: Milind Kulkarni
CS406, IIT Dharwad 33

Liveness – Recap..

1: X = 10
…….

N: Y = X + 5

X used here

X defined here

• A variable X is live at statement S if:
• There is a statement S’ that uses X

• There is a path from S to S’

• There are no intervening definitions of X

X is live at 1

..used in future

34CS406, IIT Dharwad

Liveness – Recap..

1: X = 10
2: X = Y + 2

….
N: Y = X + 5

• A variable X is dead at statement S if it is not live at S
• What about …; X = X + 1?

X is dead at 1

35CS406, IIT Dharwad

Liveness in a CFG

X = e

…

…

Given that e does not use
X,X is definitely dead here
(i.e. before the statement).

36

• Define a set LiveIn(b), where b is a basic
block, as: the set of all variables live at the
entrance of a basic block

CS406, IIT Dharwad

Liveness in a CFG

X = ...

…

…

X is defined here

37

• Define a set Def(b), where b is a basic block,
as: the set of all variables that are defined in b

CS406, IIT Dharwad

Liveness in a CFG

X = e

…

…

If X is live here (i.e. after the
statement), X is used in some
successor

… …

38

• Define a set LiveOut(b), where b is a basic
block, as: the set of all variables live at the exit of
a basic block

CS406, IIT Dharwad

Liveness in a CFG

X = e

…

…

If X is live here (i.e. after the
statement), X is used in some
successor

… …

39

• If S(b) is the set of all successors of b, then

LiveOut(b) =ڂi ∈S(b) LiveIn(i)
CS406, IIT Dharwad

Liveness in a CFG

.. = X

…

…

X must be live here (i.e.
before the statement)

40

• Define a set LiveUse(b), where b is a basic block, as
the set of all variables that are used before they are
defined within block b. LiveIn(b) ⊇ LiveUse(b)

CS406, IIT Dharwad

Liveness in a CFG - Observation

.. = Y

…

…

41

•If a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

X not live here / X is live here

If X is not live here / X is live here

CS406, IIT Dharwad

Liveness in a CFG

42

• If a variable is live on exit from b, it is either
defined in b or live on entrance to b

•Under what scenarios can a variable be live at
the entrance of a basic block?

LiveIn(b)⊇ LiveOut(b) – Def(b)

CS406, IIT Dharwad

Liveness in a CFG

43

• If a variable is live on exit from b, it is either
defined in b or live on entrance to b

•Under what scenarios can a variable be live at
the entrance of a basic block?

•Either the variable is used in the basic block

LiveIn(b)⊇ LiveOut(b) – Def(b)

CS406, IIT Dharwad

Liveness in a CFG

44

• If a variable is live on exit from b, it is either
defined in b or live on entrance to b

•Under what scenarios can a variable be live at
the entrance of a basic block?

•Either the variable is used in the basic block
•OR the variable is live at exit and not defined within
the block

LiveIn(b)⊇ LiveOut(b) – Def(b)

CS406, IIT Dharwad

Liveness in a CFG

45

•Under what scenarios can a variable be live at
the entrance of a basic block?

•Either the variable is used in the basic block
•OR the variable is live at exit and not defined within
the block

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) –
Def(b))

CS406, IIT Dharwad

Liveness in a CFG - Example

46

• Draw CFG for the code:

A:=1
if A=B then

B:=1
else

C:=1
endif
D:=A+B

A := 1
A = B

B := 1 C := 1

D := A+B

CS406, IIT Dharwad

Liveness in a CFG - Example

47

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1

b2

b3

b4

CS406, IIT Dharwad

Liveness in a CFG - Example

48

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2

b3

b4

CS406, IIT Dharwad

Liveness in a CFG - Example

49

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3

b4

CS406, IIT Dharwad

Liveness in a CFG - Example

50

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4

CS406, IIT Dharwad

Liveness in a CFG - Example

51

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

CS406, IIT Dharwad

Liveness in a CFG - Example

52

• start from use of a variable to its definition.
Is this analysis going backward or forward w.r.t. control flow?

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

CS406, IIT Dharwad

Liveness in a CFG - Example

53

• start from use of a variable to its definition.
Backward-flow problem

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

CS406, IIT Dharwad

Liveness in a CFG - Example

54

• Start from use of a variable to its definition.
• Compute LiveOut and LiveIn sets:

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

LiveOut(b4)={}

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

CS406, IIT Dharwad

Liveness in a CFG - Example

55

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

LiveIn(b4) = LiveUse(b4) ڂ (LiveOut(b4) – Def(b4))

= {A,B} ڂ ({} – {D})

D := A+B

b4
Program point

{}

CS406, IIT Dharwad

Liveness in a CFG - Example

56

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

D := A+B

b4

B := 1 C := 1
b2 b3

LiveOut(b) =ڂi ∈S(b)LiveIn(i)

LiveOut(b3) = LiveIn(b4) = {A,B}

{A,B}

{}

LiveOut(b2) = LiveIn(b4) = {A,B}

{A,B} {A,B}

CS406, IIT Dharwad

Liveness in a CFG - Example

57

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

D := A+B

b4

B := 1 C := 1
b2 b3

{A,B}

{}

{A,B} {A,B}

LiveIn(b3) = LiveUse(b3) ڂ (LiveOut(b3) – Def(b3))
= ڂ {} ({A,B} – {C}) = {A,B}

LiveIn(b2) = LiveUse(b2) ڂ (LiveOut(b2) – Def(b2))

= ڂ {} ({A,B} – {B}) = {A}

CS406, IIT Dharwad

Liveness in a CFG - Example

58

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

D := A+B

b4

B := 1 C := 1
b2 b3

{A,B}

{}

{A,B} {A,B}

{A,B}{A}

A := 1
A = B

b1
LiveOut(b) =ڂi ∈S(b)LiveIn(i)

LiveOut(b1) = LiveIn(b2)ڂLiveIn(b3)
= {A}ڂ {A,B} = {A,B}

CS406, IIT Dharwad

Liveness in a CFG - Example

59

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

D := A+B

b4

B := 1 C := 1
b2 b3

{A,B}

{}

{A,B} {A,B}

{A,B}{A}

A := 1
A = B

b1

{A,B}

LiveIn(b1) = LiveUse(b1) ڂ (LiveOut(b1) – Def(b1))

= {B} ڂ ({A,B} – {A}) = {B}

CS406, IIT Dharwad

Liveness in a CFG - Example

60

• Summary: Compute LiveIn(b) and LiveOut(b)

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

Block LiveIn LiveOut

b1 {B} {A,B}

b2 {A} {A,B}

b3 {A,B} {A,B}

b4 {A,B} {}

CS406, IIT Dharwad

Liveness in a CFG – Use Case

61

• Assume that the CFG below represents your entire program (b1 is the
entry to program and b4 is the exit)

•What can you infer from the table?

Block LiveIn LiveOut

b1 {B} {A,B}

b2 {A} {A,B}

b3 {A,B} {A,B}

b4 {A,B} {}

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

CS406, IIT Dharwad

Liveness in a CFG – Use Case

62

• Assume that the CFG below represents your entire program
•Variable B is live at the entrance of b1, the entry basic block of
CFG. This implies that B is used before it is defined. An error!

Block LiveIn LiveOut

b1 {B} {A,B}

b2 {A} {A,B}

b3 {A,B} {A,B}

b4 {A,B} {}

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

CS406, IIT Dharwad

Liveness in a CFG – Use Case

• Liveness information tells us what variable is dead. Can
remove statements that assign to dead variables.

X = 1
Y = 1 + 2
Z = Y + A

X = 1
Y = X + 2
Z = Y + A

X = 1
Y = 1 + 2
Z = Y + A

Constant Propagation Dead Code Elimination

X is dead here implies that we can
remove this statement.

CS406, IIT Dharwad 63

Liveness in a CFG – Example (Loop)

64

• How do we compute liveness information when a loop is present?

Block LiveIn LiveOut

b1 {} {A}

b2 {A} {A}

B3 {} {}

A := 0

LOOP: if (A<=10)
A := A+1

b1

b2

OUT:halt

b3

Block Def LiveUse

b1 {A} {}

b2 {A} {A}

b3 {} {}

CS406, IIT Dharwad

Liveness in a CFG - Observations

65

• Liveness is computed as information is transferred
between adjacent statements

• At a program point, a variable can be live or not live
(property: true or false)
• To begin with we did not have any

information=property is false

At a program point can the liveness information change?
• Yes, Liveness information changes from false to true

and not otherwise.

CS406, IIT Dharwad

CS406, IIT Dharwad 66

CS406, IIT Dharwad 67

CS406, IIT Dharwad 68

CS406, IIT Dharwad 69

CS406, IIT Dharwad 70

CS406, IIT Dharwad 71

CS406, IIT Dharwad 72

CS406, IIT Dharwad 73

