CS406: Compilers

Spring 2022

Week 11: Loop Optimization, ..

Optimize Loops

* Example - Code Motion

Should be careful while doing optimization of
loops

while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

Optimize Loops — Code Motion

e Should be careful while doing optimization of
loops
while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

* Optimization: can move 10/l out of loop.

Optimize Loops — Code Motion

e Should be careful while doing optimization of
loops
while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

* Optimization: can move 10/I out of loop
* What if | =07?

Optimize Loops — Code Motion

e Should be careful while doing optimization of
loops

while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

* Optimization: can move 10/I out of loop
* What if | =0?
* What if | !=0 but loop executes zero times?

Optimization Criteria - Safety and
Profitability

 Safety - is the code produced after optimization
producing same result?

* Profitability - is the code produced after optimization
running faster or uses less memory or triggers lesser
number of page faults etc.

while J > I loop * E.g. moving | out of the loop
A(j) := 10/1; introduces exception (when 1=0)
j o= 3 + 2; e E.g.if the loop is executed zero

end loop; times, moving A(j) := 10/I

out is not profitable

Optimize Loops — Code Generation

* The outline of code generation for ‘“for’

loops looked like this:

for (<init_stmt>;<bool_expr>;

end

\ 4
<init_stmt>
LOOP:
<bool_expr>
j<lop> OUT

INCR:

Jmp LOOP
OUT:

LOOP:

INCR:

OUT:

for (i=0; i<=255;i++) {
<stmt_list>

}

l Naive code generation

code for i=0;

code for i<=255
jump@ OUT

code for <stmt list>
code for i++

jump LOOP

Question: why naive is not good?

Optimize Loops — Code Generation

* What happens when ub is set to the maximum possible integer
representable by the type of 1°?

LOOP:

INCR:

OUT:

for (i=0; 1<=255;i++) {

<stmt_list>

l Better code:

code for i=0;

code for 1b=1, ub=255
code for 1lb<=ub

jump@ OUT

code for <stmt_list> LOOP -
(dee for 1lb=ub generalizing:
Jumpl OUT

code for i++ INCR:
jump LOOP

OUT:

code for i=0;
compute 1b, ub

code for lb<=ub
jump® OUT

assign index=1b
assign limit=ub

code for <stmt list>
code for index=1imit
jumpl OUT

code for increment index
jump LOOP

Optimize Loops -Identifying Invariant
Expressions

* How do we identify expressions that can be
moved out of the loop?

* LoopDef = {} setof variables defined (i.e. whose
values are overwritten) in the loop body

 LoopUse = { } ‘relevant’ variables used in
computing an expression

Mark_Invariants(Loop L) {
1. Compute LoopDef for L
2. Mark as invariant all expressions,
whose relevant variables don’t belong
to LoopDef

Optimize Loops -Identifying Invariant
Expressions

* Example LoopDef{}
for I = 1 to 100 - {A, J, K, I}
for J = 1 to 100 ~{A, J, K}
for K = 1 to 100 - {A, K}

A[T][I][K] = (I*J)*K

Optimize Loops -Identifying Invariant
Expressions

* Example LoopUse{}
for I = 1 to 100 ~{}
for J = 1 to 100 > {1}
for K = 1 to 100 »{I,J3}

A[T][I][K] = (I*J)*K

Optimize Loops -Identifying Invariant
Expressions

e Example Invariant
Expressions

for I = 1 to 100
for J = 1 to 100
for K = 1 to 100 — { I*J,
A[I][I][K] = (I*J)*K Addr(A[i][3])}

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =
Addr(A)+(I*10000)-10000+(I*100)-100kK-1

*Assuming row-major ordering of storage

Optimize Loops -Identifying Invariant
Expressions

e Example Invariant
Expressions

for I = 1 to 100
for J = 1 to 100 —
for K = 1 to 100
A[TI][I][K] = (I*I)*K

{ Addr(A[1]) }

For an array access, A[m] => Addr(A) + m
For 3D array above™, Addr(A[I][J][K]) =
Addr (A)+(I*10000)-10000+(J*100)-100+K-1

*Assuming row-major ordering of storage

Optimize Loops -Factoring Invariant
Expressions

 Move the invariant expressions identified

Factor_Invariants(Loop L) {
Mark _Invariants(L);
foreach expression E marked an invariant:
1. Create a temporary T
2. Replace each occurrence of E in L with T

3. Insert T:=E in L’s header code
// If loop is known to execute at least once,
insert T:=E before LOOP:

Optimize Loops -Factoring Invariant

* Example

for I = 1 to 190

for J =1 to

100

Expressions

for K = 1 to 190

ALT][I]

K] =

(I*3)*K

//Invariant Expressions

Optimize Loops -Factoring Invariant
Expressions

* Example

for I = 1 to 100
for J = 1 to 100
templ=A[T][]]]
temp2=I*]
for K = 1 to 100
templ[K] = [temp2*K

Optimize Loops -Factoring Invariant
Expressions

* Example

for T =1 to 100

temp3=A[I]

for J =1 to 100

templ=temp3[J]

temp2=I*]

for K = 1 to 100
templ[K] = temp2*K

Optimize Loops -Factoring Invariant
Expressions

* Expressions cannot always be moved out!

Casel: Wecan movet = a op b if the statement dominates all
loop exits where t is live

A node bbl dominates node bb?2 if all paths to bb2 must go
through bb1l

for (...) {
if(*)
a = 100
}
c=a

Cannot move a=100 because it does not dominate c=a i.e. there
is one path (when if condition is false) c=a can be executed
/'reached’ without going to a=100

Optimize Loops -Factoring Invariant
Expressions

* Expressions cannot always be moved out!

Casell: Wecanmovet = a op b ifthereisonly
one definition of t in the loop

for (...) {
if(*)
a = 100
else
a = 200
}

Multiple definition of a

Optimize Loops -Factoring Invariant
Expressions

* Expressions cannot always be moved out!

Caselll: Wecanmovet = a op b if tisnotdefined
before the loop, where the definition reaches t’s use
after the loop

a=>

for (...) {
a = 4+b

}

c=a

Definition of a in a=5 reaches c=a, whichis
defined after the loop

Optimize Loops —Strength Reduction

* Like strength reduction in peephole optimization
* E.g. replace a*2 with a<<1

e Applies to uses of induction variable in loops

e Basic induction variable (I) — only definition within
the loopisoftheformI = I % S, (Sisloop
invariant)

I usually determines number of iterations

 Mutual induction variable (J) — defined within the
loop, its value is linear function of other induction
variable, I, such that

J=I*C=%D (C, D are loop invariants)

Optimize Loops —Strength Reduction

strength_reduce(Loop L) {

Mark Invariants(L);

foreach expression E of the form I*C+D where I is
L’s loop index and C and D are loop invariants

1.
2.
3.

Create a temporary T

Replace each occurrence of E in L with T
Insert T:=I_*C+D, where I, istheinitial value of the
induction variable, immediately before L

. Insert T:=T+S*C, where S is the step size, at the end of

L's body

Optimize Loops —Strength Reduction

* Suppose induction variable I takes on values I,
I,+S, I +25, I_+3S... initerations], 2, 3,
4, and so on...

* Then, in consecutive iterations, Expression
I*C+D takes on values

I *C+D
(I+S)*C+D = I_*C+S*C+D
(I,+2S)*C+D = I_*C+2S*C+D

* The expressio.n.éhanges by a constant S*C
* Therefore, we have replaced a * and + with a +

Optimize Loops — Strength Reduction

* Example (Applying to innermost loop)

for I = 1 to 100 for I=1 to 100
for J = 1 to 100 m) temp3=Addr(A[i])
for K = 1 to 100 for J=1 to 100
A[T][I][K] = (I*I)*K templ=Addr(temp3(3))
temp2=I*]
o for K=1 to 100
temp2=I*] templ[K]=temp2*K
tempd=temp2 J
//S=1 for K=1 to 100
//C=temp2 templ[K]=temp4

CS406, IIT Dharwad temp4=temp4+temp2 24

Optimize Loops — Strength Reduction

* Exercise (Apply to intermediate loop)

for I=1 to 100 ..
temp3=Addr(A[1i]) - temp2=I*]
for J=1 to 100 tempd=temp2
templ=Addr(temp3(J)) for K=1 to 16060

temp2=I*] templ[K]=temp4
for K=1 to 100 temp4=temp4+temp2
templ[K]=temp2*K J

// Induction var = J
//S =1

// Expression =1 *]

Optimize Loops — Strength Reduction

* Exercise (Apply to intermediate loop)

temp5=1 -
for J=1 to 100
templ=Addr(temp3(3J))
temp2=temp5
temp4=temp2 '
for K=1 to 100
templ[K]=temp4

temp4=temp4+temp2
temp5=temp5+1

Optimize Loops — Strength Reduction

* Further strength reduction possible?

for I=1 to 100
temp3=Addr(A[i])
temp5=1
for J=1 to 100

templ=Addr(temp3(3J))

temp2=temp5

tempd=temp2

for K=1 to 100
templ[K]=temp4
temp4=temp4+temp2

tempS5=temp5+1I

Optimize Loops — Loop Unrolling

® Modifying induction
variable in each iteration
can be expensive

® Can instead unroll loops
and perform multiple
iterations for each
increment of the
induction variable

® What are the advantages
and disadvantages’

CS406, IIT Dharwad

for (1
Al1]

for (1
Al1]
A[1+1]
A[1+2]
A[1+3]

@; 1 < N; 1++)

l Unroll by factor of 4

Q; 1 < N; 1 += 4)

28

Optimize Loops - Summary

® [ow level optimization
® Moving code around in a single loop

® Examples: loop invariant code motion, strength
reduction, loop unrolling

® High level optimization
® Restructuring loops, often affects multiple loops

® Examples: loop fusion, loop interchange, loop tiling

CS406, IIT Dharwad

29

Useful optimizations

® Common subexpression elimination (global)
® Need to know which expressions are available at a point
® Dead code elimination

® Need to know if the effects of a piece of code are never
needed, or if code cannot be reached

e Constant folding
® Need to know if variable has a constant value

® So how do we get this information?

CS406, IIT Dharwad

30

Dataflow analysis

® Framework for doing compiler analyses to drive optimization

® Works across basic blocks

® Examples

CS406, IIT Dharwad

Constant propagation: determine which variables are
constant

Liveness analysis: determine which variables are live

Available expressions: determine which expressions
have valid computed values

Reaching definitions: determine which definitions could
“reach” a use

31

Dataflow Analysis - Common Traits

Common requirement among global optimizations:

 Know a particular property X at a program point

(There is a program point one before a statement and one
after a statement)

e Say that property X definitely holds.
OR

* Don’t know if property X holds or not (okay to be
conservative)

This requires the knowledge of entire program

Dataflow analysis

® Framework for doing compiler analyses to drive optimization

® Works across basic blocks

® Examples

Constant propagation: determine which variables are
constant

Liveness analysis: determine which variables are live

CS406, IIT Dharwad

Available expressions: determine which expressions
have valid computed values

Reaching definitions: determine which definitions could
“reach” a use

33

Liveness — Recap..

Xdef{:ed here X is live at 1
1: %X = 10 ..used in future
N: Y=X+5
X used here

* A variable X is live at statement S if:
* Thereis a statement S’ that uses X
e ThereisapathfromSto¥S
* There are no intervening definitions of X

Liveness — Recap..

10 Xisdead at 1l
Y + 2

1: X
2: X

N: Y=X+5

e A variable X is dead at statement S if it is not live at S
e Whatabout ..X =X + 1°?

CS406, IIT Dharwad 35

Liveness in a CFG

&

\ Given that e does not use
X = €] X,Xis definitely dead here
(i.e. before the statement).

* Define aset LiveIn(b), where b is a basic
block, as: the set of all variables live at the
entrance of a basic block

Liveness in a CFG

X = ... | Xisdefined here

* Define a set Def(b), where b is a basic block,
as: the set of all variables that are defined in b

Liveness in a CFG

X

e

If X is live here (i.e. after the
statement), X is used in some

Ncessor

* Define aset LiveOut(b), where b is a basic
block, as: the set of all variables live at the exit of
a basic block

Liveness in a CFG

X =

e

If X is live here (i.e. after the
statement), X is used in some

Ncessor

 If S(b) is the set of all successors of b, then

LlV@OUt(b) = Ui eS(b) leeln(l)

Liveness in a CFG

<

. =X

X must be live here (i.e.
before the statement)

* Define a set LiveUse(b), where b is a basic block, as
the set of all variables that are used before they are
defined within block b. LiveIn(b) 2 LiveUse(b)

Liveness in @ CFG - Observation

.. =Y
< |If Xis not live here / X is live here

X not live here / X is live here

|/f a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

eUnder what scenarios can a variable be live at
the entrance of a basic block?

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Liveness in a CFG

Under what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

LiveIn(b) = LiveUse(b) U (LiveOut(b) -
Def (b))

Liveness in a CFG - Example

e Draw CFG for the code:

CS406, IIT Dharwad

if A=B then A =B
B:=1
else y !
C:=1 =
endif
D:=A+B

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

1
b3

\ 4
1
47

bl b2
o B :=1
b3
b4

CS406, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

b
A :=
A =B
b4

Block | Def LiveUse

b1 Ay {B) b2
b2 B :=1
b3
b4

1
1
b3

\ 4
1
48

CS406, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

b1 (Al (B} b2
b2 CYRRY 2 e 1
b3
bl

1
b3

\ 4
1
49

CS406, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

b1 (A} {8} b2
b2 B 0 2 .o g
b3 (Y

bl

1
b3

4
1
50

CS406, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

1
b3

4
1
51

b1 (A} {8} b2
b2 B 0 2 .o g
b3 (Y

bl {D} {A,B}

CS406, IIT Dharwad

Liveness in a CFG - Example

e start from use of a variable to its definition.
Is this analysis going backward or forward w.r.t. control flow?

Block | Def LiveUse

b1 A} {B}
b2 By U
b3 (S Y

bl {D} {A,B}

CS406, IIT Dharwad 52

Liveness in a CFG - Example

e start from use of a variable to its definition.

b3 (S Y

CS406, IIT Dharwad

Backward-flow problem
A .=
A =
Block | Def
b1 (A} (B} 102
b2 B { 5 =
b4

1

B
b3 |
53

Liveness in a CFG - Example

e Start from use of a variable to its definition.
 Compute LiveOut and Liveln sets:

LiveIn(b) = LiveUse(b) U (LiveOut(b) - Def(b))

Block | Def |,
bl {A} {B} ‘
b2 B} {}
b3 ¢ {
b4 {D} {A,B}

CS406, IIT Dharwad LiveOut(b4)={}

Liveness in a CFG - Example

LiveIn(b4) = LiveUse(b4) U (LiveOut(b4) - Def(b4))
| - {A,B} U ({} - {®}) oo

S <
~~
S~=a

Program point

Block | Def

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS406, IIT Dharwad 55

Liveness in a CFG - Example

LiveOut (b) = Ui eS(b) leeln(l)
LiveOut(b3) = LivelIn(b4) = {A,B}

i e e eI _-— -
-
~-~o

~

Y
AN
AN
----_____——>\

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS406, IIT Dharwad 56

Liveness in a CFG - Example

- - - - _- - ———————————_——_——_——_—_____________
-
—_—————— - —_— P e -

LiveIn(b3) = LiveUse(b3) U (LiveOut(b3) - Def(b3))
= {} U ({A,B} - {C}) = {A,B}

LiveIn(b2) = LiveUse(b2) U (LiveOut(b2) - Def(b2))

={} U ({A,B} - {B}) = {A} . lw

~
~ -

B _ 1
.

bl {A} {B}
b2 B U

b3 (S Y

b4 {D} {A,B}

CS406, IIT Dharwad

57

Liveness in a CFG - Example

LiveOQOut (b) = i eS(b) leeln(l)

L1ve0ut(b1) = Liveln(b2) U Liveln(b3)
= {A} U {A,B} = {A,B}

~o
-~
-
-

Block | Def |LiveUse

bl {A} {B}
b2 B U

b3 (S Y

b4 {D} {A,B}

CS406, IIT Dharwad 58

Liveness in a CFG - Example

- -
-
-

LiveIn(bl) = LiveUse(bl) U (LiveOut(bl) - Def(bl))
= {B} U ({A,B} - {A}) = {B}

Block | Def

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS406, IIT Dharwad

59

Liveness in a CFG - Example

e Summary: Compute LiveIn(b) and LiveOut(b)

LiveIn(b) =

LiveUse(b) U

(LiveOut(b) - Def(b))

Block | Def |LiveUse [l Block Liveln LiveOut ___

bl {A}
b2 {B}
b3 {C}

bl {D}

CS406, IIT Dharwad

{B}

{

i
{A,B}

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
bl {AB} {}

60

Liveness In a CFG — Use Case

* Assume that the CFG below represents your entire program (b1 is the

entry to program and b4 is the exit)

*What can you infer from the table?

b4

D := A+B
CS406, IIT Dharwad

Block | Liveln |LiveOut ___

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
bl {AB} {}

61

Liveness In a CFG — Use Case

* Assume that the CFG below represents your entire program
*Variable B is live at the entrance of b1, the entry basic block of
CFG. This implies that B is used before it is defined. An error!

Block | Liveln |LiveOut ___

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
bl {AB} {}

D := A+B 62
CS406, IIT Dharwad

b4

<

Liveness in a CFG — Use Case

* Liveness information tells us what variable is dead. Can

remove statements that assign to dead variables.
X is dead here implies that we can

remove this sta‘w\t.
X =1

= 1 X =1 -
=X+2 O Y=1+2 Dy Y=1+2
=Y + A Z=Y +A Z=Y +A

Constant Propagation Dead Code Elimination

Liveness in a CFG — Example (Loop)

* How do we compute liveness information when a loop is present?

A :=0

b2

LOOP:
A

if (A<=10)
= A+l

b3

OUT:halt

CS406,

[IT Dharwad

mm

bl {A}
b2 {A} {A}
b3 v U

Block | Liveln | LiveOut__

bl U A}
b2 A; {A}
B3 U U

64

Liveness in @ CFG - Observations

* Liveness is computed as information is transferred
between adjacent statements
At a program point, a variable can be live or not live
(property: true or false)
* To begin with we did not have any
information=property is false

At a program point can the liveness information change?
* Yes, Liveness information changes from false to true
and not otherwise.

How can we find constants/’

® |deal: run program and see which variables are constant

® Problem: variables can be constant with some inputs, not
others — need an approach that works for all inputs!

® Problem: program can run forever (infinite loops?) —
need an approach that we know will finish

® |dea: run program symbolically

® Essentially, keep track of whether a variable is constant
or not constant (but nothing else)

CS406, IIT Dharwad

66

Overview of algorithm

® Build control flow graph

® We'll use statement-level CFG (with merge nodes) for
this

® Perform symbolic evaluation
® Keep track of whether variables are constant or not

® Replace constant-valued variable uses with their values, try
to simplify expressions and control flow

CS406, IIT Dharwad

67

Build CFG

X =1
X=l; y=X+2
y = X + 2,
if (y > x) then y = 5; @x?
e Y e

Symbolic evaluation

® |dea:replace each value with a
symbol

® constant (specify which), no

T
information, definitely not
constant /‘\\
® Can organize these possible 2101 2 .
values in a [attice \\\'//
L

® Set of possible values,
arranged from least
information to most
information

CS406, IIT Dharwad 69

Symbolic evaluation

® FEvaluate expressions symbolically:
eval(e,Vin)

e |[f e evaluates to a constant,
return that value. If any input is
T (or L), return T (or 1)

® Why!
® Two special operations on lattice

® meet(a, b) — highest value less
than or equal to bothaand b

® join(a, b) — lowest value greater
than or equal to bothaand b

CS406, IIT Dharwad

PN
NN\

Join often writtenasa LU b
Meet often writtenasa b

70

Putting it together

Yy

e Keep track of the symbolic value of T
a variable at every program point 1

(on every CFG edge) —

® State vector

® What should our initial value be?

® Starting state vector is all T

e (Can’t make any assumptions

about inputs — must assume |
NOt constant merge

iy
® Everything else starts as L, since :
we have no information about Y
1L

the variable at that point

end

Executing symbolically

® F[or each statement t = e evaluate
e using Vi, update value for t and
propagate state vector to next
statement

e What about switches?

® |[feis true or false, propagate Vin
to appropriate branch

® What if we can’t tell?

® Propagate Vi to both
branches, and symbolically
execute both sides

® What do we do at merges!?

end

y
TI|T
X =1
N
y=X+2
| 1L
Q%
1L
11l y =5
| /LJ_
merge
1L
.Y .
N

Handling merges

e Have two differentVj,s coming from two
different paths

® Goal: want new value for Vi, to be safe
(shouldn’t generate wrong information), and we
don’t know which path we actually took

® Consider a single variable. Several situations:

® V=1 V=% Vg, =F*

e V,

® V,=constant X,V = constanty = Vo, = T

® Vi=TVa=%2Vou=T //l\\
® Generalization:

o \\| a

CS406, IIT Dharwad

constant X,V2 = x = Vout = X

73

