
CS406: Compilers
Spring 2022

Week 10: Register allocation, Instruction Scheduling, 
Control Flow Graphs

CS406, IIT Dharwad 1

Slides Acknowledgements: Milind Kulkarni



Register Allocation

2

• Simple code generation (in CSE example): use a register 

for each temporary, load from a variable on each read, store 

to a variable at each write

•What are the problems?

•Real machines have a limited number of registers – one register 

per temporary may be too many

• Loading from and storing to variables on each use may produce a 

lot of redundant loads and stores

CS406, IIT Dharwad



Register Allocation

3

•Goal: allocate temporaries and variables to registers to:

•Use only as many registers as machine supports

•Minimize loading and storing variables to memory (keep variables 

in registers when possible)

•Minimize putting temporaries on stack (“spilling”)

CS406, IIT Dharwad



Global vs. Local

4

•Same distinction as global vs. local CSE
•Local register allocation is for a single basic block

•Global register allocation is for an entire function 

Hint: think about caller-save, callee-save registers

CS406, IIT Dharwad

Does inter-procedural register allocation make sense? Why? Why not?

When we handle function calls, registers are pushed/popped from stack



5CS406, IIT Dharwad



6CS406, IIT Dharwad



7CS406, IIT Dharwad



8CS406, IIT Dharwad



Liveness Example

9

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

{A, B}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Used B, C Killed A

CS406, IIT Dharwad

Recall: a variable is live only if its value is used in future.



Bottom-up register allocation - Example

10

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2
(spill r2 – farthest, 
store if live and dirty)

CS406, IIT Dharwad



Bottom-up register allocation - Example

11

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2

F* E*    A* add r3 r1 r1
(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3
(Load since B not in reg. 

Free dead regs)

CS406, IIT Dharwad



Bottom-up register allocation - Example

12

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2

F* E*    A* add r3 r1 r1
(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3

H*    G* add r2 r1 r1

I* add r1 r3 r1

write r1

CS406, IIT Dharwad



Instruction Scheduling

13CS406, IIT Dharwad



Instruction Scheduling

14CS406, IIT Dharwad



Why do Instruction Scheduling?

15CS406, IIT Dharwad



Why do Instruction Scheduling? Contd..

16CS406, IIT Dharwad



Instruction Scheduling - Considerations

17

•Gather constraints on schedule:

•Data dependences between instructions 

•Resource constraints

•Schedule instructions while respecting constraints

•List scheduling

•Height-based heuristic

CS406, IIT Dharwad



18

Data dependence constraints

• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d

• Dependences between instructions prevent reordering

CS406, IIT Dharwad



19CS406, IIT Dharwad



20CS406, IIT Dharwad



21CS406, IIT Dharwad



22CS406, IIT Dharwad



23CS406, IIT Dharwad



24

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Example

CS406, IIT Dharwad



25CS406, IIT Dharwad



26

ALU0 ALU1 LD/ST

CS406, IIT Dharwad



27

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

ALU0 ALU1 LD/ST

CS406, IIT Dharwad



28

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ADD (1) ADD (2)

CS406, IIT Dharwad



29

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

ALU0 ALU1 LD/ST

X

MUL

CS406, IIT Dharwad



30

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

• LOADs and STOREs can execute on 

LD/ST unit only

ALU0 ALU1 LD/ST

X
ALU0 ALU1 LD/ST

X

LOAD ? STORE

CS406, IIT Dharwad

What is incorrect here?



31CS406, IIT Dharwad



32



✓

✓ ✓

✓ ✓



CS406, IIT Dharwad



33CS406, IIT Dharwad



34CS406, IIT Dharwad



List scheduling - Example

35

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

0 1, 2, 4

1

2

3

4

5

6

7

8

9

10

Cycle # Available 

Instruction(s)

Scheduled 

Instruction(s)

Completed 

Instruction(s)

*an instruction from the 

list of available 

instructions is picked at 

random and scheduled

CS406, IIT Dharwad

1*

2, 4

2, 4 2* 1

4

3,4 3,4 2

3

5 5 4

56 6

67 7

7



36CS406, IIT Dharwad



37CS406, IIT Dharwad



38

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

Height = 1 

because latency of ST = 1 

Height = 2 

because height = height of 

child + latency = 1 + 1 

Height = 4 

because height = height of 

child + latency = 2 + 2 
Height = 3 

because height = 

height of child + latency 

= 2 + 1 

Height = 5 

because height = 

height of child + 

latency = 3 + 2 

Height = max(height of 

all children) + latency 

= max(3, 4) + 2 = 4 + 2 
Height =  height of 

child + latency 

= 4 + 2

CS406, IIT Dharwad



39CS406, IIT Dharwad



Basic Blocks and Flow Graphs

• Basic Block
• Maximal sequence of consecutive instructions with the 

following properties:
• The first instruction of the basic block is the only entry point

• The last instruction of the basic block is either the halt 
instruction or the only exit point

• Flow Graph
• Nodes are the basic blocks

• Directed edge indicates which block follows which block

40CS406, IIT Dharwad



Basic Blocks and Flow Graphs - Example

41

if A = B then
C := 1;
D := 2;

else
E := 3

fi
A := 1;

A = B?

C := 1;
D := 2;

E := 3;

A := 1

A data flow graph

TRUE FALSE

CS406, IIT Dharwad



Flow Graphs

• Capture how control transfers between basic blocks 
due to:

• Conditional constructs

• Loops

• Are necessary when we want optimize considering 
larger parts of the program

• Multiple procedures

• Whole program

42CS406, IIT Dharwad



Flow Graphs - Representation

• We need to label and track statements that are 
jump targets

• Explicit targets – targets mentioned in jump statement

• Implicit targets – targets that follow conditional jump 
statement

• Statement that is executed if the branch is not taken

• Implementation
• Linked lists for Basic Blocks

• Graph data structures for flow graphs

43CS406, IIT Dharwad



44CS406, IIT Dharwad



45CS406, IIT Dharwad



46CS406, IIT Dharwad



47CS406, IIT Dharwad



48CS406, IIT Dharwad



49CS406, IIT Dharwad

?

?



50

{1}

CS406, IIT Dharwad



51

{1}

CS406, IIT Dharwad



52

{1,3}

CS406, IIT Dharwad



53

{1,3}

CS406, IIT Dharwad



54

{1,3,5,7}

CS406, IIT Dharwad



55

{1,3,5,7}

CS406, IIT Dharwad



56

{1,3,5,7}

CS406, IIT Dharwad



57

{1,3,5,7}

CS406, IIT Dharwad



58

{1,3,5,7}

CS406, IIT Dharwad



59

{1,3,5,7,10}

CS406, IIT Dharwad



60

{1,3,5,7,10,11}

CS406, IIT Dharwad

?



61

{1,3,5,7,10,11} Block(1) = ?

CS406, IIT Dharwad



62

{1,3,5,7,10,11} Block(1) = ?
Start from statement 2 and add 
till either the end or a leader is 
reachedCS406, IIT Dharwad



63

{1,3,5,7,10,11} Block(1) = {1,2}

CS406, IIT Dharwad



64

{1,3,5,7,10,11} Block(3) = ?

CS406, IIT Dharwad



65

{1,3,5,7,10,11} Block(3) = {3,4}

CS406, IIT Dharwad



66

{1,3,5,7,10,11} Block(5) = ?

CS406, IIT Dharwad



67

{1,3,5,7,10,11} Block(5) = {5,6}

CS406, IIT Dharwad



68

{1,3,5,7,10,11} Block(7) = ?

CS406, IIT Dharwad



69

{1,3,5,7,10,11} Block(7) = {7,8,9}

CS406, IIT Dharwad



70

{1,3,5,7,10,11} Block(10) = ?

CS406, IIT Dharwad



71

{1,3,5,7,10,11} Block(10) = {10}

CS406, IIT Dharwad



72

{1,3,5,7,10,11} Block(11) = {11}

CS406, IIT Dharwad



73
Slide Courtesy: Milind Kulkarni

CS406, IIT Dharwad



74

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

CS406, IIT Dharwad



75

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 1 to block 2

CS406, IIT Dharwad



76

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 4

CS406, IIT Dharwad



77

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 3

CS406, IIT Dharwad



78

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 3 to block 4

CS406, IIT Dharwad



79

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 6

CS406, IIT Dharwad



80

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 5

CS406, IIT Dharwad



81

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 5 to block 2

CS406, IIT Dharwad



82

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

CS406, IIT Dharwad



83
Slide Courtesy: Milind Kulkarni

CS406, IIT Dharwad



84
Slide Courtesy: Milind Kulkarni

CS406, IIT Dharwad



Control Flow Graphs - Use

• Why do we need CFGs? - Global Optimization 
• Optimizing compilers do global optimization ( i.e.  

optimize beyond basic blocks)
• Differentiating aspect of normal and optimizing compilers

• E.g. loops are the most frequent targets of global 
optimization (because they are often the “hot-spots” 
during program execution)

how do we identify loops in CFGs?

85CS406, IIT Dharwad



Identify Loops in CFGs

• Loops – how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1) There is a loop entry node with the property that no 
other node in L has a predecessor outside L. That is, 
every path from entry of the entire flow graph (graph 
entry node) to any node in L goes through the loop entry 
node.

2) Every node in L has a non-empty path, completely 
within L, to the entry of L.

86CS406, IIT Dharwad



87

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

CS406, IIT Dharwad



88

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

NO. Why?

CS406, IIT Dharwad



Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?.  No. Consider:

1) There is a loop entry node with the property that no other 
node in L has a predecessor outside L. That is, every path 
from entry of the entire flow graph (graph entry node) to 
any node in L goes through the loop entry node.

89

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B4 has a predecessor B3 not in L

CS406, IIT Dharwad



Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?.  No. Consider:

• Every node in L has a non-empty path, completely within 
L, to the entry of L.

90

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B2 has a path B2->B3->B4->B5->B2
, where B3 is not in L

CS406, IIT Dharwad



Identify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.  

91

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

CS406, IIT Dharwad


