CS406: Compilers

Spring 2022

Week 10: Register allocation, Instruction Scheduling,
Control Flow Graphs

Slides Acknowledgements: Milind Kulkarni

Register Allocation

« Simple code generation (in CSE example): use a register
for each temporary, load from a variable on each read, store

to a variable at each write

*What are the problems?
*Real machines have a limited number of registers — one register
per temporary may be too many

» Loading from and storing to variables on each use may produce a
lot of redundant loads and stores

Register Allocation

*Goal: allocate temporaries and variables to registers to:
*Use only as many registers as machine supports

*Minimize loading and storing variables to memory (keep variables
In registers when possible)

*Minimize putting temporaries on stack (“spilling”)

Global vs. Local

«Same distinction as global vs. local CSE
Local register allocation is for a single basic block

*Global register allocation is for an entire function

Does inter-procedural register allocation make sense? Why? Why not?
Hint: think about caller-save, callee-save registers

When we handle function calls, registers are pushed/popped from stack

Top-down register allocation

® For each basic block

® Find the number of references of each variable

® Assign registers to variables with the most references
® Details

e Keep some registers free for operations on unassigned
variables and spilling

® Store dirty registers at the end of BB (i.e., registers which
have variables assigned to them)

® Do not need to do this for temporaries (why?)

CS406, IIT Dharwad

Bottom-up register allocation

® Smarter approach:

® Free registers once the data in them isn’t used anymore
e Requires calculating liveness

e A variable is live if it has a value that may be used in the future
® Easy to calculate if you have a single basic block:

® Start at end of block, all local variables marked dead

e |f you have multiple basic blocks, all local variables defined in the
block should be live (they may be used in the future)

® When a variable is used, mark as live, record use
® \When a variable is defined, record def, variable dead above this
e Creates chains linking uses of variables to where they were defined

e We will discuss how to calculate this across BBs later

CS406, IIT Dharwad

Bottom-up register allocation

For each tuple opA B Cin a BB, do
Rx = ensure(A)
Ry = ensure(B)
if A dead after this tuple, (Rx)
if B dead after this tuple, (Ry)
R: = (C) /lcould use Rxor Ry
generate code for op
mark Rz dirty

At end of BB, for each dirty register
generate code to store register into appropriate variable

® We will present this as if A, B, C are variables in memory.
Can be modified to assume that A, B and C are in virtual
registers, instead

Bottom-up register allocation

ensure(opr)
if opr is already in register r
return r
else
r = allocate(opr)
generate load from opr into r
return r

(r)
if r is marked dirty and variable is live
generate store

mark r as free

(opr)
if there is a free r

choose r
else

choose r to free

free(r)
mark r associated with opr
return r

Liveness Example
e What is live in this code? Recall: a variable is live only if its value is used in future.

Live Comments
1: A=B + C {A, B} Used B, C Killed A
2: C=A + B {A, B, C} Used A, B Killed C
3: T1 =B + C {A, B, C, T1} Used B, C Killed T1
4: T2 = T1 + C {A, B, C, T2} Used T1, C Killed T2
5: D = T2 {A, B, C, D} Used T2, Killed D
6: E=A + B {C, D, E} Used A, B Killed E
7: B=E + D {B, C, D} Used E, D Killed B
8: A=C+ D {A, B} Used C, D Killed A
9: T3 = A + B {T3} Used A, B Killed T3
"10: WRITE(T3) {} Used T3

Bottom-up register allocation - Example

Registers
Live R1 R2 R3 R4

1: A =7 {A} A* mov 7 rl
2: B =A + 2 |[{A, B} A* | B* add r1 2 r2
3: C=A+B |{A, B, C} A* |B* |C* add rl r2 r3
4: D =A+8B |{B, C, D} D* |B* |C* (far%% " r—‘zdre‘lad)
5: A=C+ B |{A, B, C, D} D* |B* [C* |A* |add r3 r2 r4
6: B=C + B |{A, B, C, D} |D* B*|C* A* adsdt P:z PBZ° r2
7: E=Cc+D | {A, B, C, D, E}D* E* |C* .A* add r3 r‘l, r2
0 F = C D | (A B, E,) S B
9: G = A+ B | {E, F, G}
10: H = E + F|{H, G}
11: I = H + G | {I}
12: WRITE(I) || {}

10

Bottom-up register allocation - Example

_ Registers
Live R1I R2 R3 R4
1: A =7 {A} A* mov 7 rl
2: B =A + 2 |[{A, B} A* | B* add r1 2 r2
3: C=A +B |{A, B, C} A* |B* [C* add rl1 r2 r3
4: D=A+8B |{B, C, D} D*|B* |C* (far%% & r—‘zdre‘lad)
5: A=C+ B |{A, B, C, D} D* |B* [C* |A* |add r3 r2 r4
6: B=¢C+ 8B |{A, B, C, D} D* |B* |C* |[A* |add r3 r2 r2
st r2 B;
7: E=C +D |{A, B, C, D, E}D*|E* |C* A* | 4dd r3 r1 r2
B F = CaD (A B E P} FTET| AF e
r
9: G =A+8B {E’ F, G} F* BE* |G* add r4 r‘3 r3
10: H=E + F | {H, G} (load [since B not in reg.
11: T =H + G {I} Free |dead regs)
12: WRITE(I) || {}
11

Bottom-up register allocation - Example

_ Registers
Live RI R2 R3 R4
1: A =7 {A} A* mov 7 rl
2: B =A + 2 |[{A, B} A* | B* add r1 2 r2
3: C=A +B |{A, B, C} A* |B* [C* add rl1 r2 r3
4: D=A+B [{B, C, D} D* | B* |C* far%% s r—‘zdre‘lad)
5: A=C+ B |{A, B, C, D} D* |B* [C* |A* |add r3 r2 r4
6: B=¢C+ 8B |{A, B, C, D} D* |B* |C* |A* |add r3 r2 r2
st r2 B;
7: E=Cc +D | {A, B, C, D, E}D*|E* |C* A* |3dd r3 r1 r2
8: F=C+D |{A, B, E, F} |F¥|EX| |A* lpdeebde3ad}
r
9: G =A+B {E, F, G} F* |E* |G* add r4 r3 r3
19: H=E + F|{H, G} H* G* add r2 ri ri
11: T = H + G| {I} I* add r1 r3 ri
12: WRITE(I) || 1} write rl
12

Instruction Scheduling

13

Instruction Scheduling

® Code generation has created a sequence of assembly
instructions

® But that is not the only valid order in which instructions could
be executed!

LD A,RI LD C,R4
LD B,R2 LD B, R2
R3 =RI +R2 LD A,RI
LD C, R4 » R5=R4*R2
R5 = R4 * R2 R3 =RI +R2
R6 =R3 +R5 R6 =R3 +R5
ST R6,D ST R6,D

e Different orders can give you better performance, more
instruction level parallelism, etc.

CS406, IIT Dharwad 14

Why do Instruction Scheduling?

® Not all instructions are the same

® |oads tend to take longer than stores, multiplies tend to
take longer than adds

® Hardware can overlap execution of instructions (pipelining)
® (Can do some work while waiting for a load to complete

® Hardware can execute multiple instructions at the same
time (superscalar)

® Hardware has multiple functional units

CS406, IIT Dharwad 15

Why do Instruction Scheduling? Contd..

® VLIW (very long instruction word)
® Popular in the 1990s, still common in some DSPs

® Relies on compiler to find best schedule for instructions,
manage instruction-level parallelism

® |Instruction scheduling is vital
® OQut-of-order superscalar

® Standard design for most CPUs (some low energy chips, like
in phones, may be in-order)

® Hardware does scheduling, but in limited window of
instructions

® Compiler scheduling still useful to make hardware’s life easier

CS406, IIT Dharwad

16

Instruction Scheduling - Considerations

Gather constraints on schedule:
Data dependences between instructions
*Resource constraints

*Schedule instructions while respecting constraints
eList scheduling
*Height-based heuristic

17

Data dependence constraints

* Are all instruction orders legal?

a=b + C

\

d=a+ 3
e=f+d

* Dependences between instructions prevent reordering

CS406, IIT Dharwad

18

Data dependences

® Variables/registers defined in one instruction are used in a
later instruction: flow dependence

® Variables/registers used in one instruction are overwritten
by a later instruction: anti dependence

® Variables/registers defined in one instruction are
overwritten by a later instruction: output dependence

® Data dependences prevent instructions from being
reordered, or executed at the same time.

CS406, IIT Dharwad

19

Other constraints

® Some architectures have more than one ALU

a=b*c These instructions do not have any
d=e+f dependence. Can be executed in parallel

® But what if there is only one ALU?

® Cannot execute in parallel

® [f a multiply takes two cycles to complete, cannot even

execute the second instruction immediately after the
first

¢ Resource constraints are limitations of the hardware
that prevent instructions from executing at a certain time

CS406, IIT Dharwad 20

Representing constraints

® Dependence constraints and resource constraints limit
valid orders of instructions

® [nstruction scheduling goal:

® For each instruction in a program (basic block), assign it
a scheduling slot

® Which functional unit to execute on, and when
® As long as we obey all of the constraints

® So how do we represent constraints?

CS406, IIT Dharwad

21

Data dependence graph

® Graph that captures data dependence constraints
® FEach node represents one instruction

® FEach edge represents a dependence from one instruction
to another

® |label edges with instruction latency (how long the first
instruction takes to complete = how long we have to wait
before scheduling the second instruction)

CS406, IIT Dharwad

22

® ADD takes | cycle
® MUL takes 2 cycles
® LD takes 2 cycles

® ST takes | cycle

CS406, IIT Dharwad

Example

LD A,RI
LD B, R2
R3 =Rl +R2
LD C,R4
R5 = R4 * R2
R6 = R3 +R5
ST R6,D

23

LD A,RI
LD B, R2
R3 =RI + R2
LD C, R4
R5 = R4 * R2
R6 = R3 + R5
ST R6,D

ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle

CS406, IIT Dharwad

Example

R6 = R3 + R5

24

Reservation tables

e Represent resource constraints using reservation tables

e For each instruction, table shows which functional units are
occupied in each cycle the instruction executes

® # rows: latency of instruction
® # columns: number of functional units

e T[i][j] marked <« functional unit j occupied during cycle i

e (Caveat: some functional units are pipelined: instruction
takes multiple cycles to complete, but only occupies the
unit for the first cycle

e Some instructions have multiple ways they can execute: one
table per variant

CS406, IIT Dharwad

25

Example

® Two ALUs, fully pipelined e ADD takes | cycle
® One LD/ST unit, not pipelined ® MUL takes 2 cycles
® ADDs can execute on ALUO or ALUI ¢ LD takes 2 cycles
® MULs can execute on ALUO only ® ST takes | cycle

® | OADs and STOREs both occupy the LD/ST unit

ALUO |ALUl1 |LD/ST

CS406, IIT Dharwad 26

Example

* Two ALUSs, fully pipelined
* One LD/ST unit, not pipelined

ALUO |ALUl1 |LD/ST

CS406, IIT Dharwad

Example

» Two ALUs, fully pipelined = ISEUDIEIES e
* One LD/ST unit, not pipelined ® MUL takes 2 cycles

* ADDs can execute on ALUO or ALU1 e LD takes 2 cycles

e ST takes | cycle

ALU® |ALU1 |LD/ST ALU@ |ALUL |LD/ST
X X
ADD (1) ADD (2)

CS406, IIT Dharwad 28

Example

* Two ALUSs, fully pipelined

* One LD/ST unit, not pipelined
* ADDs can execute on ALUO or ALU1
« MULSs can execute on ALUO only

ALUO

ALU1 | LD/ST

X

CS406, IIT Dharwad

MUL

ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle

29

Example

» Two ALUs, fully pipelined = ISEUDIEIES e
* One LD/ST unit, not pipelined ® MUL takes 2 cycles
* ADDs can execute on ALUO or ALU1
« MULs can execute on ALUO only

« LOADs and STORES can execute on ool
LD/ST unit only

® |D takes 2 cycles

ALUO |ALU1 |LD/ST
X

ALUO |ALU1 |LD/ST

LOAD ? STORE

What is incorrect here?
30

Example

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LD/ST
MUL X

Can use reservation tables to see if instructions
can be scheduled: see if tables overlap

MUL still takes two
cycles. Since ALU is fully
pipelined, only occupies

the ALU for |

31

Using tables

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LDAST Which of the sequences below are valid?
MUL X | = run instructions in same cycle
; = move to next cycle

ADD |ADD v MUL;MUL |ADD v
ADD |MUL Vv LOAD | MUL v STORE ; LOAD v
MUL | MUL x LOAD ;STORE x

Scheduling

® (Can use these constraints to schedule a program

® Data dependence graph tells us what instructions are
available for scheduling (have all of their dependences
satisfied)

® Reservation tables help us build schedule by telling us
which functional units are occupied in which cycle

CS406, IIT Dharwad 33

.
2.

List scheduling

Start in cycle O
For each cycle

Determine which
instructions are
available to execute

2. From list of

instructions, pick one
to schedule, and
place in schedule

3. If no more

instructions can be
scheduled, move to
next cycle

Cycle

ALUO

ALUI

LD/ST

0

VjoOo|N]jocjn] bW

o

34

CS406, IIT Dharwad

NOuiph whNBR

List scheduling - Example

LD A, R1
LD B, R2
R3 = R1 + R2
LD C, R4
RS = R4 * R2
R6 = R3 + R5
ST R6, D

R6 = R3 + R5

Cycle # Available

Scheduled Completed

\Instruction(s) Instruction(s) Instruction(s)

/

e

0 (1,2,4 | 1
1 2,4
> | 221 o % 1 *an instruction from the
’ list of available
3 | 4 instructions is picked at
4 3,4 3,4 2 random and scheduled
5
6 5 5 4
7
8 6 6 5
9 7 7 6
10 7
35

List scheduling

|.LD A,RI
2.LD B,R2
3.R3=RI +R2
4.LD C,R4
5.R5 =R4 *R2
6.R6 =R3 +R5
7.ST R6,D

Cycle ALUO ALU | LD/ST

0 I
I I
2 2
3 2
4 3 4
5 4
6 5

7

8 6

9 7
10

36

Height-based scheduling

e |mportant to prioritize instructions

® |nstructions that have a lot of downstream instructions
dependent on them should be scheduled earlier

® |nstruction scheduling NP-hard in general, but height-
based scheduling is effective

® Instruction height = latency from instruction to farthest-away
leaf

® |eaf node height = instruction latency

® |Interior node height = max(heights of children +
instruction latency)

® Schedule instructions with highest height first

CS406, IIT Dharwad 37

Computing heights
Height = max(height of
all children) + latency Height = height of
=max(3,4)+2=4+2 child + latency

maX(S, 6) = 6 :4+2

(6)

Height =5

because height =
height of child +
latency = 3 + 2

Height = 3
because height =
height of child + latency
=2+1

(8) Height= 4

because height = height of
child + latency =2 + 2

Height = 2

(2) because height = height of
child + latency =1 + 1

Height = 1
@(1) because latency of ST =1

38

Height-based list scheduling

|.LD A,RI
2.LD B,R2
3.R3 =RI| +R2
4.LD C,R4
5.R5 = R4 * R2
6.R6 = R3 +R5
7.ST R6,D

Cycle ALUO ALUI LD/ST

0 2
I 2
2 4
3 4
4 5 I
5 I
6 3

7 6

8 7

9

|0

39

Basic Blocks and Flow Graphs

e Basic Block

 Maximal sequence of consecutive instructions with the
following properties:

* The first instruction of the basic block is the only entry point

 The last instruction of the basic block is either the halt
instruction or the only exit point

* Flow Graph
* Nodes are the basic blocks
* Directed edge indicates which block follows which block

Basic Blocks and Flow Graphs - Example

if A = B then
C := 1; TRUE FALSE
D := 2;

else
E := 3

fi

A :=1;

A data flow graph

CS406, IIT Dharwad 41

Flow Graphs

e Capture how control transfers between basic blocks
due to:
* Conditional constructs
* Loops
* Are necessary when we want optimize considering
larger parts of the program

* Multiple procedures
* Whole program

Flow Graphs - Representation

* We need to label and track statements that are
jump targets
* Explicit targets — targets mentioned in jump statement

* Implicit targets — targets that follow conditional jump
statement

e Statement that is executed if the branch is not taken
* Implementation

* Linked lists for Basic Blocks
* Graph data structures for flow graphs

CS406, IIT Dharwad

A =4
tl = A *B
repeat {
t2 = t1/C
1f (t2 2 W) {
M=tl * k
t3 =M+ 1
¥
H=1
M=1t3 - H
} until (T3 >

Running example

)

44

CS406, IIT Dharwad

Running example

PO Woo~NO U wWNEBRE
*
H A

el

45

CFG for running example

CS406, IIT Dharwad

A=4
tl=A*B
L1: 2 = tl/c

1f t2 < W goto L2

goto L1

l2: H=1
M=1t3 -H
1f t3 = 0 goto L3

L2: halt

How do we build

this automatically?

46

Constructing a CFG

® To construct a CFG where each node is a basic block

® |dentify leaders: first statement of a basic block

® |n program order, construct a block by appending

subsequent statements up to, but not including, the next
leader

|dentifying leaders

® First statement in the program

® Explicit target of any conditional or unconditional branch

® |mplicit target of any branch

CS406, IIT Dharwad

a7

Partitioning algorithm

® |Input:set of statements, stat(i) = i*h statement in input

® Output: set of leaders, set of basic blocks where block(x) is
the set of statements in the block with leader x

® Algorithm
leaders = {1} /[Leaders always includes first statement
fori=1 to |n| /[|n] = number of statements

if stat(i) is a branch, then
leaders = leaders v all potential targets
end for
worklist = leaders
while worklist not empty do
X = remove earliest statement in worklist
block(x) = {x}
for (i=x + [;i < |n| and i & leaders; i++)
block(x) = block(x) u {i}
end for
end while
CS406, IIT Dharwad 48

Running example

O oo~ U b MNP

o
S

Leaders =
Basic blocks =

CS406, IIT Dharwad

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

49

Leaders = {1}

Basic blocks =

CS406, IIT Dharwad

Running example

A=4

O 00 ~N O U1l WN|F

o
o

—
=

—
™NJ

L3:

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

50

Running example

A=4

tl = A *B

L1 t2=1t1/C
1f t2 < W goto L2
M=1tl * k
t3 =M+ 1

Z: H=1
M=+t3 - H
1f t3 > @ goto L3
goto L1

L3: halt

O 00N O UT p WIN (-

o
o

Leaders = {1}
Basic blocks =

CS406, IIT Dharwad

Running example

A=4
t1 = A * B

L1 t2 =11/ C

1f t2 < W goto L2
M=1tl * k
t3 =M+ 1

Z: H=1
M=+t3 - H
1f t3 > @ goto L3
goto L1

L3: halt

O 00 ~NO VT pIWIN

o
o

Leaders = {1, 3}

Basic blocks =

CS406, IIT Dharwad

Running example

A=4
t1 = A * B
1: t2=t1/C

1f t2 < W goto L2

M=1tl * k
t3 =M+ 1
Z: H=1
M=+t3 - H
1f t3 > @ goto L3
goto L1
L3: halt

O 00N O UVIlh([WN -

o
o

Leaders = {1, 3}

Basic blocks =

CS406, IIT Dharwad

Running example

L1:

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2

M=1t1 * k

L2

O 0o ~NOUVIH WN -

[
S

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

CS406, IIT Dharwad

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

54

Running example

L1:

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

L2

O 0o NO|UT B W N -

[
S

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

CS406, IIT Dharwad

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

55

Running example

L1:

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

L2

H=1

O OINOY VLT A W N -

[
S

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

CS406, IIT Dharwad

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

56

Running example

L1:

L2

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=1t3 - H

Oco|IN O VLT B W N

[
S

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

CS406, IIT Dharwad

1f t3 > @ goto L3
goto L1
halt

57

Running example

L1:

L2

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1I

M =13 - H

O|co N O U1 WN -

1f t3 > @ goto L3

[
S

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

CS406, IIT Dharwad

goto L1
halt

58

Running example

O oo ~NO UTpH WN

L1:

L2

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1I

M=1t3 - H

1f t3 > @ goto L3

[
S

goto L1

11

L3:

halt

Leaders = {1,3,5,7,10}

Basic blocks =

CS406, IIT Dharwad

59

Running example

O oo ~NO UTpH WN

[
S

L1:

L2

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

11

L3:

halt

Leaders = {1,3,5,7,10,11}

Basic blocks = ?

CS406, IIT Dharwad

60

Running example

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

o

Leaders = {1,3,5,7,10,11}

Basic blocks =

CS406, IIT Dharwad

Block(1) = ?

61

Running example

A =14
tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2

P © O~ U H»WN
o
+
w
|
m

o

Leaders= {1,3,5,7,10,11} Block(1l) = ?

Basic blocks = Start from statement 2 and add
till either the end or a leader is
reached 62

Leaders = {1,3,5,7,10,11}

Basic blocks =

CS406, IIT Dharwad

Running example

o

P O OO ~NOO Ul b WN =

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

Block(1)

11,2}

63

Running example

o

Leaders= { ,3,5,7,10,11}

Basic blocks =

CS406, IIT Dharwad

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

Block(3) = ?

64

Leaders = {
Basic blocks =

CS406, IIT Dharwad

Running example

o

P O OO ~NOO Ul b WN =

,3,5,7,10,11}

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

Block(3)

13,4}

65

Running example

o

Leaders= { , ,5,7,10,11}

Basic blocks =

CS406, IIT Dharwad

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

Block(5) = ?

66

Running example

P © OO~ U A WRN -
+
)
|
=
+
—

o

Leaders= { , ,5,7,10,11} BlOCk(5) = {5,6}

Basic blocks =

CS406, IIT Dharwad

Leaders =
Basic blocks =

CS406, IIT Dharwad

Running example

o

J J)7J1@)11}

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

Block(7) = ?

68

Leaders =
Basic blocks =

CS406, IIT Dharwad

Running example

o

J J)7J1@)11}

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

Block(7) = {7,8,9}

69

Leaders =
Basic blocks =

CS406, IIT Dharwad

Running example

o

J J J ,1@,11}

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

Block(10) = ?

70

Running example

PO W ~NO U HWN K
+
W
|
=
+
—

o

Leaders= { , , , ,10,11} Block(10) = {10}

Basic blocks =

CS406, IIT Dharwad

71

Leaders =
Basic blocks =

CS406, IIT Dharwad

J

Running example

P O OO ~NOO Ul b WN =
+
w
|
=
+
—

o

, ., , ,11} Block(11l) = {11}

72

Running example

1f t3 > 0 goto L3
goto L1
halt

RSO oo N U WN P
+
w
|
=<
+
—

|

Leaders = {1,3,5,7,10, | I}
Basic blocks = {{l,2},{3,4},{5,6},{7,8,9} {10}, {I 1} }

CS406, IIT Dharwad

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
x = last statement of block(i)
if stat(x) is a branch, then
for each explicit target y of stat(x)
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/

end for

CS406, IIT Dharwad 74

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
| x = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 1 to block 2
create edge from block i to block y
end for
[if statix) | tional €] |
create edge from block i to block i+/

end for
CS406, IIT Dharwad

75

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Output:The CFG N\ N
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
| for each explicit target y of stat(x) | Edge from block 2 to block 4
create edge from block i to block y

end for

if stat(x) is not unconditional then
create edge from block i to block i+/

end for
CS406, IIT Dharwad

76

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Output:The CFG N\ = N
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 2 to block 3
create edge from block i to block y

end for

Lif stat(x) is not unconditional then |
create edge from block i to block i+/

end for
CS406, IIT Dharwad

1

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Output:The CFG N\ @
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 3 to block 4
create edge from block i to block y

end for

Lif stat(x) is not unconditional then |
create edge from block i to block i+/

end for
CS406, IIT Dharwad

78

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG /\ @ Ny
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
| x = last statement of block(i) |
if stat(x) is a branch, then
| for each explicit target y of stat(x) | Edge from block 4 to block 6
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/

end for
CS406, IIT Dharwad

79

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG /\ @ PN
for i = | to |block| {{1,2},{3,4},{5,6},{7,8, 9?:?19}1 {11}}
| x = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 4 to block 5
create edge from block i to block y

end for

Lif stat(x) is not unconditional then |
create edge from block i to block i+/

end for
CS406, IIT Dharwad 80

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Qutput:The CFG /\ @ N

fori=Ito|block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
| x = last statement of block(i) |

if stat(x) is a branch, then
| for each explicit target y of stat(x) | Edge from block 5 to block 2
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/

end for
CS406, IIT Dharwad 81

Block(1)

Block(2)

Block(3)

Block(4)

Result

goto L1

Block(5)

82

Discussion

® Some times we will also consider the statement-level CFG,
where each node is a statement rather than a basic block

® FEither kind of graph is referred to as a CFG

® |n statement-level CFG, we often use a node to explicitly
represent merging of control

® Control merges when two different CFG nodes point to
the same node

® Note: if input language is structured, front-end can generate
basic block directly

e “GOTO considered harmful”

CS406, IIT Dharwad

83

Statement level CFG

A=4
Y
tl—A*B
£2 = t1l/c

¥

1f t2 < W goto L2

goto L1

M=1tl * k
¥
t3 =M+ 1
¢
L2: H=1I
L]
M=+3 -H
¥
1f t3 = @ goto L3
¥
halt

84

Control Flow Graphs - Use

* Why do we need CFGs? - Global Optimization

* Optimizing compilers do global optimization (i.e.
optimize beyond basic blocks)
* Differentiating aspect of normal and optimizing compilers

* E.g. loops are the most frequent targets of global
optimization (because they are often the “hot-spots”
during program execution)

how do we identify loops in CFGs?

|dentify Loops in CFGs

* Loops — how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1)

2)

There is a loop entry node with the property that no
other node in L has a predecessor outside L. That is,
every path from entry of the entire flow graph (graph

entry node) to any node in L goes through the loop entry
node.

Every node in L has a non-empty path, completely
within L, to the entry of L.

ldentify Loops in CFGs

Block(1) ‘A =_4

t2 = t1l/c
Block(2) ‘iF £2 < W goto L2

goto L1 Block(5)

H
=t3 - H
f t3 > @0 goto L3

[L5: halt
Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops? .

ldentify Loops in CFGs

t2 = tl/c
Block(2) ‘iF t2 < wm

goto L1 Block(5)

k

I

TR

Block(4) M = +3 - H
— GU NO. Why?

[L5: halt
Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

|dentify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

1) There is a loop entry node with the property that no other
node in L has a predecessor outside L. That is, every path
from entry of the entire flow graph (graph entry node) to
any node in L goes through the loop entry node.

B1 [*., < graph entry node

B2 | tézfﬁmloop entry node

B3(|- locte 1t IBS B4 has a predecessor B3 not in L

H=1I
B4 M=+%3 =H

if t3 =z @ goto L3

B6 [| o

CS406, IIT Dharwad

|dentify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

* Every node in L has a non-empty path, completely within
L, to the entry of L.

Bl 5., < graph entry node

B2 | tiﬁtgiiﬁ:\loop entry node

M= t1 * k
B3([hiit | E=o IB> B2 has a path B2->B3->B4->B5->B2
,Where B3 isnotinlL

H=1I
B4 [/ %5,

if t3 =z @ goto L3

B6 [| o

CS406, IIT Dharwad

|dentify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.

CS406, IIT Dharwad

Bl

B2

B3

B4

B6

a4 = 4
tl=4 * E

té = tlic
1f t2 < W goto LE

k
ti=M+1

H=1
M=%3 - H
if t3 = @ goto L3

halt

~—— graph entry node

loop entry node

B5

goto L1

91

