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Control Flow Graphs
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Register Allocation
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• Simple code generation (in CSE example): use a register 

for each temporary, load from a variable on each read, store 

to a variable at each write

•What are the problems?

•Real machines have a limited number of registers – one register 

per temporary may be too many

• Loading from and storing to variables on each use may produce a 

lot of redundant loads and stores
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Register Allocation
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•Goal: allocate temporaries and variables to registers to:

•Use only as many registers as machine supports

•Minimize loading and storing variables to memory (keep variables 

in registers when possible)

•Minimize putting temporaries on stack (“spilling”)
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Global vs. Local
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•Same distinction as global vs. local CSE
•Local register allocation is for a single basic block

•Global register allocation is for an entire function 

Hint: think about caller-save, callee-save registers
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Does inter-procedural register allocation make sense? Why? Why not?

When we handle function calls, registers are pushed/popped from stack
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Liveness Example
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Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

{A, B}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Used B, C Killed A
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Recall: a variable is live only if its value is used in future.



Bottom-up register allocation - Example
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Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2
(spill r2 – farthest, 
store if live and dirty)
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Bottom-up register allocation - Example
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Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2

F* E*    A* add r3 r1 r1
(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3
(Load since B not in reg. 

Free dead regs)
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Bottom-up register allocation - Example
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Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2

F* E*    A* add r3 r1 r1
(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3

H*    G* add r2 r1 r1

I* add r1 r3 r1

write r1
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Instruction Scheduling
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Instruction Scheduling
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Why do Instruction Scheduling?
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Why do Instruction Scheduling? Contd..
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Instruction Scheduling - Considerations
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•Gather constraints on schedule:

•Data dependences between instructions 

•Resource constraints

•Schedule instructions while respecting constraints

•List scheduling

•Height-based heuristic
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Data dependence constraints

• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d

• Dependences between instructions prevent reordering
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R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Example
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ALU0 ALU1 LD/ST
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

ALU0 ALU1 LD/ST
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ADD (1) ADD (2)
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

ALU0 ALU1 LD/ST

X

MUL
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

• LOADs and STOREs can execute on 

LD/ST unit only

ALU0 ALU1 LD/ST

X
ALU0 ALU1 LD/ST

X

LOAD ? STORE
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What is incorrect here?
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✓

✓ ✓

✓ ✓
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List scheduling - Example
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1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

0 1, 2, 4

1

2

3

4

5

6

7

8

9

10

Cycle # Available 

Instruction(s)

Scheduled 

Instruction(s)

Completed 

Instruction(s)

*an instruction from the 

list of available 

instructions is picked at 

random and scheduled
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1*

2, 4

2, 4 2* 1

4

3,4 3,4 2

3

5 5 4

56 6

67 7

7
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R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

Height = 1 

because latency of ST = 1 

Height = 2 

because height = height of 

child + latency = 1 + 1 

Height = 4 

because height = height of 

child + latency = 2 + 2 
Height = 3 

because height = 

height of child + latency 

= 2 + 1 

Height = 5 

because height = 

height of child + 

latency = 3 + 2 

Height = max(height of 

all children) + latency 

= max(3, 4) + 2 = 4 + 2 
Height =  height of 

child + latency 

= 4 + 2

CS406, IIT Dharwad



39CS406, IIT Dharwad



Basic Blocks and Flow Graphs

• Basic Block
• Maximal sequence of consecutive instructions with the 

following properties:
• The first instruction of the basic block is the only entry point

• The last instruction of the basic block is either the halt 
instruction or the only exit point

• Flow Graph
• Nodes are the basic blocks

• Directed edge indicates which block follows which block
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Basic Blocks and Flow Graphs - Example
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if A = B then
C := 1;
D := 2;

else
E := 3

fi
A := 1;

A = B?

C := 1;
D := 2;

E := 3;

A := 1

A data flow graph

TRUE FALSE
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Flow Graphs

• Capture how control transfers between basic blocks 
due to:

• Conditional constructs

• Loops

• Are necessary when we want optimize considering 
larger parts of the program

• Multiple procedures

• Whole program
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Flow Graphs - Representation

• We need to label and track statements that are 
jump targets

• Explicit targets – targets mentioned in jump statement

• Implicit targets – targets that follow conditional jump 
statement

• Statement that is executed if the branch is not taken

• Implementation
• Linked lists for Basic Blocks

• Graph data structures for flow graphs

43CS406, IIT Dharwad



44CS406, IIT Dharwad



45CS406, IIT Dharwad



46CS406, IIT Dharwad



47CS406, IIT Dharwad



48CS406, IIT Dharwad



49CS406, IIT Dharwad

?

?



50

{1}
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{1}
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{1,3}
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{1,3}
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{1,3,5,7}
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{1,3,5,7}
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{1,3,5,7}
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{1,3,5,7}
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{1,3,5,7}
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{1,3,5,7,10}
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{1,3,5,7,10,11}
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{1,3,5,7,10,11} Block(1) = ?
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{1,3,5,7,10,11} Block(1) = ?
Start from statement 2 and add 
till either the end or a leader is 
reachedCS406, IIT Dharwad
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{1,3,5,7,10,11} Block(1) = {1,2}
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{1,3,5,7,10,11} Block(3) = ?
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{1,3,5,7,10,11} Block(3) = {3,4}
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{1,3,5,7,10,11} Block(5) = ?
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{1,3,5,7,10,11} Block(5) = {5,6}
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{1,3,5,7,10,11} Block(7) = ?
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{1,3,5,7,10,11} Block(7) = {7,8,9}
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{1,3,5,7,10,11} Block(10) = ?
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{1,3,5,7,10,11} Block(10) = {10}
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{1,3,5,7,10,11} Block(11) = {11}
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 1 to block 2
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 4
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 3
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 3 to block 4
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 6
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 5
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 5 to block 2
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Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)
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Control Flow Graphs - Use

• Why do we need CFGs? - Global Optimization 
• Optimizing compilers do global optimization ( i.e.  

optimize beyond basic blocks)
• Differentiating aspect of normal and optimizing compilers

• E.g. loops are the most frequent targets of global 
optimization (because they are often the “hot-spots” 
during program execution)

how do we identify loops in CFGs?
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Identify Loops in CFGs

• Loops – how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1) There is a loop entry node with the property that no 
other node in L has a predecessor outside L. That is, 
every path from entry of the entire flow graph (graph 
entry node) to any node in L goes through the loop entry 
node.

2) Every node in L has a non-empty path, completely 
within L, to the entry of L.
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Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs
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Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

NO. Why?
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Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?.  No. Consider:

1) There is a loop entry node with the property that no other 
node in L has a predecessor outside L. That is, every path 
from entry of the entire flow graph (graph entry node) to 
any node in L goes through the loop entry node.

89

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B4 has a predecessor B3 not in L
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Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?.  No. Consider:

• Every node in L has a non-empty path, completely within 
L, to the entry of L.

90

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B2 has a path B2->B3->B4->B5->B2
, where B3 is not in L
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Identify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.  
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graph entry node

loop entry node

B1

B2

B3

B4

B5

B6
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