
1

CS406: Compilers
Spring 2022

Week1: Overview, Structure of a compiler

Why Study Compilers?

2

Job Posting: 2021 LLVM Developers' Meeting (swoogo.com)

Very Very Exciting Jobs!

https://llvm.swoogo.com/2021devmtg/jobposting?i=Di1CWCxd5VHhWS3HEowxFXvAPWwbODsa

• Few disciplines with deep theory +

practice

4

“..Theory and practice are two sides of the same
coin..” - Jeff Ullman, ACM Turing Award lecture.

5

Intro to Compilers

• One way to implement programming languages

• Programming languages are notations for

specifying computations to machines

• Target can be an assembly code, executable,

another source program etc.

CompilerProgram TargetCompilerProgram Target

6

Intro to Compilers

• Alternate way to implement programming

languages

Interpreter
Data

OutputProgram

Data

7

CompilerProgram Target

Data

Output

Interpreter
Data

OutputProgram

Data

Online

Offline

these are the two types of language processing systems

8

What is a Compiler?

Traditionally: Program that analyzes and translates from a high-level

language (e.g. C++) to low-level assembly language that can be

executed by the hardware

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {

b = 3;
}

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

slide courtesy: Milind Kulkarni

9

Compilers are translators

•Fortran

•C

•C++

•Java

•Text processing

language

•HTML/XML

•Command &

Scripting

Languages

•Natural Language

•Domain Specific

Language

▪Machine code

▪Virtual machine code

▪Transformed source

code

▪Augmented source

code

▪Low-level commands

▪Semantic components

▪Another language

translate

slide courtesy: Milind Kulkarni

10

Compilers are optimizers

• Can perform optimizations to make a program more

efficient

var a
var b
var c
mov a r1
addi 3 r1
mov r1 b
mov a r2
addi 3 r2
mov r2 c

int a, b, c;
b = a + 3;
c = a + 3;

var a
var b
var c
mov a r1
addi 3 r1
mov r1 b
mov r1 c

slide courtesy: Milind Kulkarni

c = b;

11

Compilers as Translators

1. High level language assembly language

2. High level language machine independent bytecode

3. Bytecode native machine code

4. High level language High level language

slide courtesy: Milind Kulkarni

How would you categorize a compiler that handles SQL queries?

(e.g. gcc)

(e.g. javac)

(e.g. java’s JIT compiler)

(e.g. domain-specific languages, many research languages)

12

HLL to Assembly

• Compiler converts program to assembly

• Assembler is machine-specific translator which converts assembly

to machine code

add $7 $8 $9 ($7 = $8 + $9) => 000000 00111 01000 01001 00000 100000

• Conversion is usually one-to-one with some exceptions

• Program locations

• Variable names

Program Assembly Machine codeCompiler Assembler

slide courtesy: Milind Kulkarni

13

HLL to Bytecode

• Compiler converts program into machine independent

bytecode

• e.g. javac generates Java bytecode, C# compiler generates CIL

• Interpreter then executes bytecode “on-the-fly”

• Bytecode instructions are “executed” by invoking methods of

the interpreter, rather than directly executing on the machine

• Aside: what are the pros and cons of this approach?

Program Bytecode Execute!Compiler Interpreter

slide courtesy: Milind Kulkarni

14

HLL to Bytecode to Assembly

• Compiler converts program into machine independent

bytecode

• e.g. javac generates Java bytecode, C# compiler generates CIL

• Just-in-time compiler compiles code while program executes

to produce machine code

– Is this better or worse than a compiler which generates machine

code directly from the program?

Program Bytecode Machine codeCompiler JIT Compiler

slide courtesy: Milind Kulkarni

15

Why do we need compilers?

• Compilers provide portability

• Old days: whenever a new machine was built, programs had to be

rewritten to support new instruction sets

• IBM System/360 (1964): Common Instruction Set Architecture

(ISA) --- programs could be run on any machine which supported

ISA

– Common ISA is a huge deal (note continued existence of x86)

• But still a problem: when new ISA is introduced (EPIC) or new

extensions added (x86-64), programs would have to be rewritten

• Compilers bridge this gap: write new compiler for an ISA, and then

simply recompile programs!

slide courtesy: Milind Kulkarni

16

Why do we need compilers?

• Compilers enable high-performance and productivity

• Old: programmers wrote in assembly language, architectures were

simple (no pipelines, caches, etc.)

• Close match between programs and machines --- easier to achieve

performance

• New: programmers write in high level languages (Ruby, Python),

architectures are complex (superscalar, out-of-order execution,

multicore)

• Compilers are needed to bridge this semantic gap

• Compilers let programmers write in high level languages and still get

good performance on complex architectures

slide courtesy: Milind Kulkarni

17

Semantic Gap

• Python code that actually runs on GPU

import pycuda
import pycuda.autoinit from pycuda.tools import
make_default_context
c = make_default_context()
d = c.get_device()
……

source: nvidia.com

Impossible without Compilers

18

History

• 1954: IBM 704

– Huge success

– Could do complex math

– Software cost > Hardware cost

Source: IBM Italy,

https://commons.wikimedia.org/w/index.php?curid=48929471

How can we improve the efficiency of creating software?

19

History

• 1953: Speedcoding

– High-level programming language by John Backus

– Early form of interpreters

– Greatly reduced programming effort

– About 10x-20x slower

– Consumed lot of memory (~300 bytes = about 30%

RAM)

20

Fortran I

• 1957: Fortran released

– Building the compiler took 3 years

– Very successful: by 1958, 50% of all software created

was written in Fortran

• Influenced the design of:

– high-level programming languages e.g. BASIC

– practical compilers

Today’s compilers still preserve the structure of Fortran I

21

Structure of a Compiler

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

22

Scanner

• Analogy: Humans processing English text

Rama is a neighbor.

Ra mais an eigh bor.

You have to do some work to align the spaces and understand

the sentence.

23

Scanner

• Consider the program text

– Has tokens that are:

1. keywords – if

2. Punctuation marks – (,), {, }, blankspaces, tab
space (\t), newlines (\n)

3. Identifiers – a, b

4. Constants/Literals – 4, 5

5. Operators - <, =

if (a < 4) {
b = 5

}

24

Scanner

• A compiler starts by seeing only program text

• as a series of letters

if (a < 4) {
b = 5

}

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’

25

Scanner

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

• Analogy: Humans processing English text
– recognize words in Rama is a neighbor.

• Rama, is, a, neighbor

• Additional details such as punctuations(.), capitalizations (R), blank
spaces.

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’

26

Scanner

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’

if (ID(a) OP(<) LIT(4))

{ ID(b) OP(=) LIT(5) }

27

Scanner - Summary

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

• But we still don’t know what the syntactic structure of the

program is

if (ID(a) OP(<) LIT(4))

{ ID(b) OP(=) LIT(5) }

slide courtesy: Milind Kulkarni

28

Exercise

Convert the following program text into tokens:

c = a + b * 60

29

Parser - Analogy

• Diagramming English sentences

Rama is a good neighbor

Noun Verb Article Adjective Noun

Subject Object

Sentence

Tree structure (inverted)

Group lower-level language elements to higher-level language elements

30

Parser

• Converts a string of tokens into parse tree or abstract

syntax tree

• Captures syntactic structure of the code (i.e. “this is an if
statement, with a then-block”

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

31

if (ID(a) OP(<) LIT(4))

{ ID(b) OP(=) LIT(5) }

cond-expr assign-stmtKeyword (IF)

stmt

stmt-list

() { }

if_stmt

32

Parser

• Converts a string of tokens into parse tree or abstract

syntax tree

• Captures syntactic structure of the code (i.e. “this is an if
statement, with a then-block”)

if-stmt

stmt_list assign_stmt

b

5

b

5

a

4

<

slide courtesy: Milind Kulkarni

33

Exercise

What is the right abstract syntax tree for the

following program stmt?

pos = initPos + speed * 60

=

pos

initPos

+

*

speed 60

=

pos

initPos

*

+

speed

60

34

Semantic Actions

• Interpret the semantics of syntactic constructs

• Refer to actions taken by the compiler based on the

semantics of program statements.

• Up until now, we have looked at syntax of a program

– what is the difference?

slide courtesy: Milind Kulkarni

35

Syntax vs. Semantics

• Syntax: “grammatical” structure of language
– What symbols, in what order, is a legal part of the

language?
• But something that is syntactically correct may mean nothing!

– “Colorless green ideas sleep furiously.”

• Semantics: meaning of language
– What does a particular set of symbols, in a particular

order mean?
• What does it mean to be an if statement?

– “evaluate the conditional, if the conditional is true, execute the then
clause, otherwise execute the else clause”

slide courtesy: Milind Kulkarni

36

Semantic Actions – What is done?

• What actions are taken by compiler based on the semantics

of program statements ?

– Examples (analogy):

Are they referring to the same person Ram?

Ram said Ram has a big heart.

Programming languages have rules to resolve ambiguities like above:

bind variables to their scopes:

int Ram = 1;
//some code here
{

int Ram = 2;
..

}
//some code here

37

Semantic Actions – What is done?

• What actions are taken by compiler based on the semantics

of program statements ?

– Examples:

Ram left her home in the evening

- Programming languages have rules to enforce types

Usual naming conventions indicate that
there is a “type mismatch” between ‘Ram’
and ‘her’: they refer to different types.

- Check for type inconsistencies

38

Semantic Actions – How is it done?

• What actions are taken by compiler based on the semantics

of program statements ?

– Building a symbol table

– Generating intermediate representations

slide courtesy: Milind Kulkarni

39

Symbol Tables

• A list of every declaration in the program, along with other

information

1. Variable declarations: types, scope

2. Function declarations: return types, # and type of

arguments

Integer ii;
…
ii = 3.5;
…
print ii;

Name Type Scope
ii int global

…

slide courtesy: Milind Kulkarni

Example Program Symbol Table

40

Intermediate Representation

• Also called IR

• A (relatively) low level representation of the program

• But not machine-specific!

• One example: three address code

– Each instruction can take at most three operands (variables, literals,

or labels)

– Note: no registers!

slide courtesy: Milind Kulkarni

if (a < 4) {
b = 5

}

bge a, 4, done
mov 5, b

done: //done!

41

Exercise

Explain the semantics of the following program stmt:

pos = initPos + speed * 60

42

A Note on Semantics

• How do you define semantics?

– Static semantics: properties of programs

• All variables must have type

• Expressions must use consistent types

• Can define using attribute grammars

– Execution semantics: how does a program execute?

• Defined through operational or denotational semantics

• Beyond the scope of this course!

– For many languages, “the compiler is the specification”

slide courtesy: Milind Kulkarni

43

Optimizer

• Transforms code to make it more efficient

• Different kinds, operating at different levels

– High-level optimizations

• Loop interchange, parallelization

• Operates at level of AST, or even source code

– Scalar optimizations

• Dead code elimination, common sub-expression elimination

• Operates on IR

– Local optimizations

• Strength reduction, constant folding

• Operates on small sequences of instructions

slide courtesy: Milind Kulkarni

44

Optimizer

Reducing word usage (Analogy):

Sunny felt a sense of having experienced it before when
his bike started making a hissing sound

Exercise: is this optimization correct?

X = Y * 0 is the same as X = 0

Dejavu

45

Code Generation

• Generate assembly from intermediate representation

– Select which instruction to use

– Select which register to use

– Schedule instructions

ld a, r1
mov 4, r2
cmp r1, r2
bge done
mov 5, r3
st r3, b
done:

bge a, 4 done
mov 5, b
done: //done

slide courtesy: Milind Kulkarni

if (a < 4) {
b = 5

}

46

Code Generation

• Generate assembly from intermediate representation

– Select which instruction to use

– Select which register to use

– Schedule instructions

mov 4, r1
ld a, r2
cmp r1, r2
blt done
mov 5, r1
st r1, b
done:

bge a, 4 done
mov 5, b
done: //done

slide courtesy: Milind Kulkarni

ld a, r1
mov 4, r2
cmp r1, r2
bge done
mov 5, r3
st r3, b
done:

Previous slide

if (a < 4) {
b = 5

}

47

Structure of a Compiler

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

Use regular expressions to define tokens. Can then use

scanner generators such as lex or flex.

Define language using context free grammars. Can then

use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area

(e.g. dataflow analysis frameworks)

Written manually.

slide courtesy: Milind Kulkarni

48

Structure of a Compiler

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

Use regular expressions to define tokens. Can then use

scanner generators such as lex or flex.

Define language using context free grammars. Can then

use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area

(e.g. dataflow analysis frameworks)

Written manually.

slide courtesy: Milind Kulkarni

49

Front-end vs. Back-end

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

• Scanner + Parser + Semantic actions + (high

level) optimizations called the front-end of a

compiler

front-end /

analysis

back-end /

synthesis

• IR level optimizations and code generation

(instruction selection, scheduling, register

allocation) called the back-end of a compiler

• Can build multiple front-ends for a particular

back-end

•e.g. gcc or g++ or many front-ends which

generate common intermediate language

(CIL)

• Can build multiple back-ends for a particular

front-end

•gcc allows targeting different architectures

slide courtesy: Milind Kulkarni

50

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 1 (Sections: 1.1 to 1.3, 1.5)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 1 (Sections 1.1 to 1.3, 1.5)

Suggested Reading

