CS406: Compilers

Spring 2022

Week1: Overview, Structure of a compiler

Why Study Compilers?

\\\j;‘ Madan Musuvathi @madanMus Company Description: At IBM, work is more than a job - it's a calling: To bu
s always) @RISE_MSR is looking for i along with clients and sell. To make markets. To invent. To collaborate.
arch in programming languages, fc attempt things you've never thought possible. Are you ready to lead in this
IR ‘ler/runtime systems, and softwa the world's most challenging problems? If so, lets talk. IBM compilers

\?‘ﬁ‘ 0:»"‘ «careers.microsoft.com/us/en/jc . technology targeting a variety of hardware and software; including AlX, IBM
< mng Languages-Formal-Mett Linux on IBM Z. We produce compilers for a range of source language
e 9% ¢ Feel free to DM me if vou Python, Node.js) optimized for IBM Power and IBM Z.
Company Description: We at MathWorks believe in the importa Company Contact: Dickson Chau - dickson.chau@ca.ibm.com
4\ MathWOrkS human knowledge and profoundly improve our standard of livin
do their best work. Because of the breadth of work we do, compl Job Title: Intermediate C/C++ & Fortran Compiler Developer

middle, and back. If you love geeking out with SIMD intrinsics, pi
analyses, designing elegant intermediate representations, playir
partially evaluating expressions, reasoning about parallel prograi Company Contact: David Finkelstein - dxi@google com

systems, we've got a job for you. Go g |e Job Title: Chrome OS Toolchain Engineer

Job Description: Our team delivers production quality tool
debugging tools) for C, C++, Rust, and Go in Chrome OS. OL
to boost the developers’ experience and enhance Chrome
mentoring new team members.

Job Description: The IBM C/C++ & Fortran Compiler Group is looking for ex

Company Contact: Dale Martin -martind@mathworks.com

Job Title: Compiler Engineer LLVM
Responsibilities:
Job Descrip,

tign: Our aroun is resppnsible for the core technolog

the basis for the compile ” [c
/ Omy
Company Contact: Ted Kre (ig nnOV f/On?\ Co,
: Vi, ~Cnter bregy SScripg;
Job Title: Compiler and/or Dt DIA. produ 2 5'U9h -ecft' N sl
Job Description: The LLDB dek. /E‘VS/ R Cls net tecr, IF)o/Gg/eS t;om,.m i the
Clang and the LLDB expression « “EMmae.. (IS TANEN 18ty Wevei

Ed Vinod Grover @vinodg

Compiler research intern positions at NVIDIA (Seattle) fo
polyhedral compilation, program synthesis, compiler opti
compiler-jobs@Nvidia.com

oW Twitter Dec 7th

LLDB team, most of your work wi,
LLVM and Swift community. LLDB
software stack and externally by mii

Job Title: Linker Engineer

Job Description: The dyld team is respe
Apple platforms (dyld, [d64, cc tools). As &
programs link and launch efficiently — an
device Apple ships. You will also collaborate
software's CPU and memory efficiency acro:

Job Title: Performance Compiler Enginee

Job Description: The CPU and Accelerato
compiler performance and optimization !
CPUs and Accelerators on all Apple platfr
industry-impacting technology that ent
performance, battery life, compile-time

. New
the LLVM open source project and get Seg ang \ Y
= N Dr/m,'z
Biler &t
Job Title: C++ Compiler Engineer T
Ela?

to F Oro,

https://llvm.swoogo.com/2021devmtg/jobposting?i=Di1CWCxd5VHhWS3HEowxFXvAPWwbODsa

* Few disciplines with deep theory +
practice

"..Theory and practice are two sides of the same
coin.." - Jeff Ullman, ACM Turing Award lecture.

Intro to Compilers

* One way to Implement programming languages

* Programming languages are notations for
specifying computations to machines

Program > Compiler

» Target

« Target can be an assembly code, executable,

another source program etc.

Intro to Compllers

 Alternate way to implement programming
languages

Program
BFAM = Interpreter ~Output

Data ——

Program ———» Compiler - »Target
Offline Y
Output
Program >
8 Interpreter ———Output
Data >
Online

these are the two types of language processing systems

What is a Compiler?

Traditionally: Program that analyzes and translates from a high-level
language (e.g. C++) to low-level assembly language that can be
executed by the hardware

var a
int a, b; var b
3 = 3 mov 3 a
if (a < 4) ::j> mov 4 ri
i cmpl a rl
b = 2; jge 1 e
boelse | mov 2 b
b = 3; ,
1 jmp 1 d

1l emmov 3 b
1 d:;done

Compilers are translators

*Fortran

C

C++

*Java

*Text processing
language
*HTML/XML
Command &
Scripting
Languages
*Natural Language
Domain Specific
Language

translate

d

=Machine code

=Virtual machine code
=Transformed source
code

*Augmented source
code

=Low-level commands
=Semantic components
*Another language

Compilers are optimizers

« Can perform optimizations to make a program more
efficient

int a, b, c;

b =a + 3;
—€—=—1a—+ 35"
C = b;

var a
var b
var c

:;> mov a ril
addi 3 ri
mov rl b
mov a r2
addi 3 r2

mov r2 c

>

var a
var b

var c

mov a rl

addi 3 ri
mov rl b

mov rl c

10

> W N

Compilers as Translators

High level language = assembly language (e.g. gcc)
High level language = machine independent bytecode (e.g.javac)
Bytecode — native machine code (e.g. java’s JIT compiler)

High level language =— High level language
(e.g. domain-specific languages, many research languages)

How would you categorize a compiler that handles SQL queries?

11

HLL to Assembly

Program [— Compiler —» Assemply |— Assembler - Machine code

Compiler converts program to assembly

Assembler is machine-specific translator which converts assembly
to machine code

add $7 $8 $9 ($7 = $8 + $9) => 000000 00111 01000 01001 00000 100000

Conversion is usually one-to-one with some exceptions

* Program locations

 Variable names
12

HLL to Bytecode

Program — Compiler —» Bytecode |- Interpreter » Execute!

Compiler converts program into machine independent
bytecode

* e.g.Javac generates Java bytecode, C# compiler generates CIL
Interpreter then executes bytecode “on-the-fly”

Bytecode instructions are “executed” by invoking methods of
the interpreter, rather than directly executing on the machine

Aside: what are the pros and cons of this approach?

13

HLL to Bytecode to Assembly

Program — Compiler —» Bytecode |- JIT Compiler - Machine code

Compiler converts program into machine independent
bytecode

* e.g.javac generates Java bytecode, C# compiler generates CIL

Just-in-time compiler compiles code while program executes
to produce machine code

— Is this better or worse than a compiler which generates machine
code directly from the program?

14

Why do we need compilers?

Compilers provide portability

Old days: whenever a new machine was built, programs had to be
rewritten to support new instruction sets

IBM System/360 (1964): Common Instruction Set Architecture
(ISA) --- programs could be run on any machine which supported
ISA

— Common ISA is a huge deal (note continued existence of x86)

But still a problem: when new ISA is introduced (EPIC) or new
extensions added (x86-64), programs would have to be rewritten

Compilers bridge this gap: write new compiler for an ISA, and then

simply recompile programs!
15

Why do we need compilers?

Compilers enable high-performance and productivity

Old: programmers wrote in assembly language, architectures were
simple (no pipelines, caches, etc.)

» Close match between programs and machines --- easier to achieve
performance

New: programmers write in high level languages (Ruby, Python),
architectures are complex (superscalar, out-of-order execution,
multicore)

Compilers are needed to bridge this semantic gap

« Compilers let programmers write in high level languages and still get
good performance on complex architectures
16

Semantic Gap

« Python code that actually runs on GPU

import pycuda
import pycuda.autoinit from pycuda.tools import
make_default context

c = make default context()
d = c.get device() <iiii;ﬁ§

source: nvidia.com
17

History

* 1954: IBM 704

— Huge success
— Could do complex math

— Software cost > Hardware cost

Source: IBM ltaly,
https://commons.wikimedia.org/w/index.php?curid=48929471

How can we improve the efficiency of creating software?

18

History

« 1953: Speedcoding

— High-level programming language by John Backus
— Early form of interpreters
— Greatly reduced programming effort

L
L
L\

— About 10x-20x slower

— Consumed lot of memory (~300 bytes = about 30%
RAM)

19

Fortran |

« 1957: Fortran released
— Building the compiler took 3 years

— Very successful: by 1958, 50% of all software created
was written in Fortran

 Influenced the design of:
— high-level programming languages e.g. BASIC
— practical compilers

Today’s compilers still preserve the structure of Fortran |

20

Structure of a Compiler

Scanner / Lexical
Analysis

Parser / Syntax
Analysis

Semantic Actions

Optimizer

Code Generator

21

Scanner

* Analogy: Humans processing English text

Rama 1s a neighbor.

Ra mais an eigh bor.

You have to do some work to align the spaces and understand
the sentence.

22

Scanner

Consider the program text if ((a < 4) {
b =5

— Has tokens that are:
1. keywords — if

2. Punctuation marks—(,), {, }, blankspaces, tab
space (\t), newlines (\n)

3. ldentifiers—a, b
Constants/Literals — 4, 5
5. Operators-<, =

P

Scanner

« A compiler starts by seeing only program text

if (a < 4) {
b =5
}

 as a series of letters

(i) (_F) c D ((J (a) (<J (4) ())
€ D ({J (\nJ (\-t) (b) (=J (5)
(\n) (})

Scanner

« A compiler starts by seeing only program text
e Scanner converts program text into string of tokens

(i) (.F) € D (() (aJ (<) (4) €\)
€ D ({J C\nJ f\t) (b) c_) (5)
C\n) (})

« Analogy: Humans processing English text
— recognize words in Rama is a neighbor.
« Rama, is, a, neighbor

« Additional details such as punctuations(.), capitalizations (R), blank
spaces.

25

Scanner

« A compiler starts by seeing only program text
e Scanner converts program text into string of tokens

€3 (.FJ c D c/) €AxJ c) cno €\
C\nJ (})

GO~~~)
COme) (o) —~ame)~

26

Scanner - Summary

« A compiler starts by seeing only program text
e Scanner converts program text into string of tokens

O O
T 1

« But we still don’t know what the syntactic structure of the
program is

27

Exercise

Convert the following program text into tokens:

CcC=a+b * 60

28

Parser - Analogy

« Diagramming English sentences

Rama is a good neighbor

e T

Noun Verb Article Adjective Noun

N /
e

Subject Object

T

Sentence

~

Tree structure (inverted)

Group lower-level language elements to higher-level language elements 5

Parser

« Converts a string of tokens into parse tree or abstract
syntax tree

« Captures syntactic structure of the code (i.e. “thisis an if
statement, with a then-block”

O O
T a1

30

if (ID(a) OP (<) LIT(4)
{ ID(b) OP(=) LIT(5)
If_stmt

stmt-lis
|
stmt
|

Keyword (IF) (cond-expr) { assign-stmt }

31

Parser

Converts a string of tokens into parse tree or abstract
syntax tree

Captures syntactic structure of the code (i.e. “thisis an if
statement, with a then-block”)

2 a

®6

L,

if-stmt

B

stmt_list assign_stmt

A 4

7s

32

Exercise

What is the right abstract syntax tree for the
following program stmt?

pos = initPos + speed * 60

/:\ /*
PN RN
/\ o

33

Semantic Actions

Interpret the semantics of syntactic constructs

Refer to actions taken by the compiler based on the
semantics of program statements.

Up until now, we have looked at syntax of a program
— what is the difference?

34

Syntax vs. Semantics

« Syntax: “grammatical” structure of language

— What symbols, in what order, is a legal part of the
language”?
« But something that is syntactically correct may mean nothing!
— “Colorless green ideas sleep furiously.”

¢ Semantics: meaning of language

— What does a particular set of symbols, in a particular
order mean?

 \What does it mean to be an if statement?

— “evaluate the conditional, if the conditional is true, execute the then
clause, otherwise execute the else clause’

35

Semantic Actions — What is done?

 What actions are taken by compiler based on the semantics
of program statements ?

— Examples (analogy):

Ram said Ram has a big heart.

=22 L

Are they referring to the same person Ram?

Programming languages have rules to resolve ambiguities like above:
bind variables to their scopes:

int Ram = 1;
//some code here

{

int Ram = 2;

}]
//some code here 36

Semantic Actions — What is done?

 What actions are taken by compiler based on the semantics
of program statements ?

— Examples:
Ram left her home in the evening

N

Usual naming conventions indicate that
there is a “type mismatch” between €¢Ram’
and ‘her’: they refer to different types.

- Programming languages have rules to enforce types
- Check for type inconsistencies

37

Semantic Actions — How Is it done?

 What actions are taken by compiler based on the semantics
of program statements ?

— Building a symbol table

— Generating intermediate representations

38

Symbol Tables

« A list of every declaration in the program, along with other
Information

1. Variable declarations: types, scope

2. Function declarations: return types, # and type of
arguments

Example Program Symbol Table

Name Type Scope

Integer 1ii;
BEl 14 ii int global

v

ii = 3.5;

print ii;

39

Intermediate Representation

 Also called IR

« A (relatively) low level representation of the program
» But not machine-specific!

* One example: three address code

bge a, 4, done if (a < 4) {
mov 5, b b =5
done: //done! }

— Each instruction can take at most three operands (variables, literals,
or labels)

— Note: no registers!

40

Exercise

Explain the semantics of the following program stmt:

pos = initPos + speed * 60

41

A Note on Semantics

« How do you define semantics?

— Static semantics: properties of programs
 All variables must have type
« EXpressions must use consistent types
« Can define using attribute grammars

— Execution semantics: how does a program execute?
« Defined through operational or denotational semantics

« Beyond the scope of this course!

— For many languages, “the compiler is the specification”

42

Optimizer

 Transforms code to make it more efficient

 Different kinds, operating at different levels

— High-level optimizations
« Loop interchange, parallelization
* Operates at level of AST, or even source code

— Scalar optimizations
« Dead code elimination, common sub-expression elimination
* QOperates on IR

— Local optimizations
« Strength reduction, constant folding
» Operates on small sequences of instructions

43

Optimizer

Reducing word usage (Analogy): | .

Sunny felt a sense of having-experienced-it-before when

his bike started making a hissing sound

Exercise: is this optimization correct?

X =Y * 9 Isthesameas X = 0

44

Code Generation

« (Generate assembly from intermediate representation

— Select which instruction to use
— Select which register to use

— Schedule instructions
if ((a < 4) {
b =75

s

bge a, 4 done
‘mov 5, b_] [i:>

done: //done

¥

1d a, ril
mov 4, r2
cmp rl, r2

bge done

mov 5, r3
st r3, b

done:

45

Code Generation

- Generate assembly from intermediate representation
— ISeIect which instruction to use‘

\gSeIect which register to use |
chedule Instructions

Previous slide

mov 4, rl
ld a, r2
bge a, 4 done

cmp rl, r2
mov 5, b ::i::> ‘blt done

done: //done

mov 5, rl
T st rl, b
if (ac<4){ done:

b =5
} 46

- Structure of a Compiler

Source code
v

Scanner / Lexical
Analysis

I
Tokens

¢

Parser / Syntax
Analysis

I
Syntax Tree

¢

Semantic Actions

IR
\ 4

Optimizer

IR
\ 4

Code Generator

|

Executable

Use regular expressions to define tokens. Can then use
scanner generators such as lex or flex.

Define language using context free grammars. Can then
use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area
(e.g. dataflow analysis frameworks)

Written manually.

a7

- Structure of a Compiler

Source code
v

Scanner / Lexical Use regular expressions g ns. Can then use
Analysis g

Tokens
v
Parser / Syntax ext free grammars. Can then
Analysis ators such as yacc or bison.

IR
v
Optimizer Written manually. Automation is an active research area
I'R (e.g. dataflow analysis frameworks)
v
Code Generator Written manually.
'

Executable 48

Front-end vs. Back-end
|

Source code

« Scanner + Parser + Semantic actions + (high
level) optimizations called the front-end of a
compiler

* IR level optimizations and code generation front-end /
(instruction selection, scheduling, register analysis
allocation) called the back-end of a compiler
 Can build multiple front-ends for a particular
back-end

*e.g. gcc or g++ or many front-ends which

generate common intermediate language IR

(CIL) -

Optimizer

 Can build multiple back-ends for a particular IIR
front-end v

gcc allows targeting different architectures Code Generator

49

Executable

Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Uliman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley
2007

— Chapter 1 (Sections: 1.1 to 1.3, 1.5)

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 1 (Sections 1.1t0 1.3, 1.5)

50

