
Finals Review
CS406: Compilers

Spring 2022

1

Practice Exercise: CFGs and low-level
loop optimizations

2

1. Draw CFG for the code shown.
Identify loops if any. For each
loop identified, mark entry node
and all basic blocks.
(refer to slides 10, 36, and 48 of week12)

2. Identify loop invariant
statements. Can they be moved
outside their enclosing loop?
(refer to slides 59, 65-67, week12)

3. Identify induction variables.
Show the code that results after
performing possible strength
reduction
(refer to slides 59, 65-69, week12)

3

1. X = 2;
2. Y = 10;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y + Z * -3;
9. Q = Y - 8;
10. Z = Z - Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

4

1. X = 2;
2. Y = 10;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y + Z * -3;
9. Q = Y - 8;
10. Z = Z - Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

1
2

3

4
5
6

7

8
9

10
11

12
13

B1

B2

B3

B4

B5

B6 B714
15

Loop headers/entry nodes: B2 and B4. The BBs in

the loop for B2 are: B2, B3, B4, B5, B6. The BBs in

the loop for B4 are: B4, B5.

5

Loop invariant statements: 6, 9.

• 6 cannot be moved, because Z is defined twice inside the loop (note that if we

try to move it outside the loop, Z will not get reinitialized before the inner loop).

• 9 can be moved, though. Note that first it gets moved outside the inner loop, but

then is still loop invariant (because Y is only defined outside the loop), so can be

moved outside the outer loop, as well. Code after moving invariant statement:

1. X = 2;
2. Y = 10;
9’. Q = Y - 8;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y + Z * -3;
10. Z = Z - Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

1
2
9’

3

4
5
6

7

8
9

10
11

12
13

B1

B2

B3

B4

B5

B6 B714
15

6

In the inner loop, Z is an induction variable (because Q is loop invariant), and D is

a mutual induction variable. After performing strength reduction on the inner loop,

we get:

1. X = 2;
2. Y = 10;
9’. Q = Y - 8;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
8’. D’ = Y + Z * -3;
7. if (B < Z) goto 12
8. D = D’
10. Z = Z - Q;
10’. D’ = D’ + -3 * -Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

7

In the outer loop, X is an induction variable, and both A and B are mutual induction

variables. After strength reduction, we get:

1. X = 2;
2. Y = 10;
9’. Q = Y - 8;
4’. A’ = Y * X;
5’. B’ = X * 2 + Y;
3. if (X < Y) goto 14
4. A = A’
5. B = B’
6. Z = 10;
6’. D’ = Y + Z * -3;
7. if (B < Z) goto 12
8. D = D’
10. Z = Z - Q;
10’. D’ = D’ + -3 * -Q;
11. goto 7;
12. X = X + 2;
12’. A’ = A’ + 2 * Y;
12’’ B’ = B’ + 4;
13. goto 3;
14. Y = D; 15. halt

Exercise

1. Draw iteration graph for:

2. What are the distance and direction vectors?

3. Can the loops be interchanged?

4. Repeat 1,2,and 3 for the following loop.

8

for(j=0;j<5;j++)
for(i=0;i<5;i++)

a[j][i]=a[j-1][i+2]+a[j][i-2]

for(i=0;i<5;i++)
for(j=0;j<5;j++)

a[i][j]=a[i-1][j-2]

9

i

j

The blue arrows are the
dependences between the write and
the A[j-1][i+2]read, and the red
arrows are the dependences
between the write and the A[j][i-
2]read.

The distance vectors are (1,−2)
and (0,2)

The direction vectors are (+,−) and (0,+) (or, alternately,
(<,>) and (0,<))

The loops cannot be interchanged because the (1,−2) flow
dependence would trans-form into a (−2,1) dependence, which
is not possible (more specifically, we would eliminate the
flow dependence and introduce a (2,−1) anti-dependence).

Short Quiz

• https://forms.gle/zmUph7ixTN9CaUMF8

10

https://forms.gle/zmUph7ixTN9CaUMF8

Practice Exercise: Peephole
Optimizations - CSE

11

1. Show the results of performing
CSE on the code shown. Write 3AC
after performing CSE.

2. Suppose A and F are aliased.
How would that change the results
of CSE

12

1. READ(A)
2. READ(B)
3. C = A + B
4. A = A + B
5. B = C * D
6. T1 = C * D
7. T2 = T1 + C
8. F = A + B
9. C = F + B
10. G = A + B
11. T3 = F + B
12. WRITE(T3)

13

Worksheet

1. READ(A)
2. READ(B)
3. C = A + B
4. A = A + B
5. B = C * D
6. T1 = C * D
7. T2 = T1 + C
8. F = A + B
9. C = F + B
10. G = A + B
11. T3 = F + B
12. WRITE(T3)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Expression available
before executing
the stmt

After performing
CSE

14

Worksheet

1. READ(A)
2. READ(B)
3. C = A + B
4. A = A + B
5. B = C * D
6. T1 = C * D
7. T2 = T1 + C
8. F = A + B
9. C = F + B
10. G = A + B
11. T3 = F + B
12. WRITE(T3)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Expression available
before executing
the stmt

After performing
CSE

Suppose A and F are
aliased

15

Each row shows in parentheses what expressions are
available before the expression is evaluated.

1. READ(A)
2. READ(B)
3. C = A + B
4. A = A + B (A + B)
5. B = C * D (nothing -- writing to A kills A + B)
6. T1 = C * D (C * D)
7. T2 = T1 + C (C * D)
8. F = A + B (T1 + C, C * D)
9. C = F + B (A + B, T1 + C, C * D)
10. G = A + B (A + B, F + B)
11. T3 = F + B (A + B, F + B)
12. WRITE(T3) (A + B, F + B)

16

After performing CSE:

1. READ(A)
2. READ(B)
3. C = A + B
4. A = C (A + B)
5. B = C * D (nothing -- writing to A kills A + B)
6. T1 = B (C * D)
7. T2 = T1 + C (C * D)
8. F = A + B (T1 + C, C * D)
9. C = F + B (A + B, T1 + C, C * D)
10. G = F (A + B, F + B)
11. T3 = C (A + B, F + B)
12. WRITE(T3) (A + B, F + B)

17

If A and F are aliased, writing to F will kill any
expression that uses A (and vice versa), and also,
computing F + B is the same as computing A + B.

1. READ(A)
2. READ(B)
3. C = A + B
4. A = C (A + B, F + B)
5. B = C * D (nothing --writing to A kills A+B and F+B)
6. T1 = B (C * D)
7. T2 = T1 + C (C * D)
8. F = A + B (T1 + C, C * D)
9. C = F + B (T1 + C, C * D -- writing to F kills A+B)
10. G = C (A + B, F + B – we are using C, not F)
11. T3 = C (A + B, F + B)
12. WRITE(T3) (A + B, F + B)

Practice Exercise: Dataflow analysis
(available expressions)

18

1. Show the results of running an
“available expressions” analysis on
the code shown. For each line of
code, show which expressions are
available in that line of code.
(refer to slide 8, week 14. Section 9.2.6 in
Dragon book)

19

1: x = 4;
2: y = 7;
3: if (x > c) goto 12
4: if (y > 3) goto 8
5: c = x + 1;
6: b = a + x;
7: goto 10
8: a = a + x;
9: b = x + 1;
10: y = a + x;
11: goto 3;
12: c = a + x
13: halt

20

1: x = 4;
2: y = 7;
3: if (x > c) goto 12
4: if (y > 3) goto 8
5: c = x + 1;
6: b = a + x;
7: goto 10
8: a = a + x;
9: b = x + 1;
10: y = a + x;
11: goto 3;
12: c = a + x
13: halt

1
2

3

4

5
6
7

8
9

10
11

12
13

B2

B3

B4

B5

B6

B7

B1

Basic
Block

Pred. Succ. Gen Kill

B1 Entry B2

B2 B6,B1 B3,B7

B3 B2 B4,B5

B4 B3 B6

B5 B3 B6

B6 B4,B5 B2

B7 B2 Exit
21

1
2

3

4

5
6
7

8
9

10
11

12
13

B2

B3

B4

B5

B6

B7

B1 1: x = 4;
2: y = 7;
3: if (x > c) goto 12
4: if (y > 3) goto 8
5: c = x + 1;
6: b = a + x;
7: goto 10
8: a = a + x;
9: b = x + 1;
10: y = a + x;
11: goto 3;
12: c = a + x
13: halt

worksheet

Basic Block Pred. Succ. Gen Kill

B1 Entry B2 4,7 x+1, a+x,
x>c, y>3

B2 B6,B1 B3,B7 x>c -

B3 B2 B4,B5 y>3 -

B4 B3 B6 x+1,a+x x>c

B5 B3 B6 x+1 a+x

B6 B4,B5 B2 a+x y>3

B7 B2 Exit a+x x>c

22

23

Basic Block IN OUT

B1 - 4, 7

B2 4, 7 4, 7, x>c

B3 4, 7, x>c 4, 7, x>c, y>3

B4 4, 7, x > c, y > 3 4, 7, y > 3, x + 1, a + x

B5 4, 7, x > c, y>3 4, 7, x > c, x+1, y>3

B6 4, 7, y>3, x+1, a
+ x

4, 7, x + 1, a + x, y>3

B7 4, 7, x > c 4, 7, a+x

GDB

– GNU Debugger – A tool for inspecting your

C/C++ programs

• How to begin inspecting a program using gdb?

• How to control the execution?

• How to display, interpret, and alter memory

contents of a program using gdb?

• Misc – displaying stack frames, visualizing

assembler code.

29

GDB

– Compile your programs with –g option

30

GDB – Start Debug

• Start debug mode (gdb gdbdemo)

– Note the executable on first line (not .c files)

– Note the last line before (gdb) prompt:

• if –g option is not used while compiling, you will

see “(no debugging symbols found)”

31

GDB

– GNU Debugger – A tool for inspecting your

C/C++ programs

• How to begin inspecting a program using gdb?

• How to control the execution?

• How to display, interpret, and alter memory

contents of a program using gdb?

• Misc – displaying stack frames, visualizing

assembler code.

32

GDB – Set breakpoints

• Set breakpoints (b)

– At line 14

– Beginning of foo

33

GDB – Start execution

• Start execution (r <command-line arguments>)

– Execution stops at the first breakpoint encountered

– Continue execution (c)

34

GDB – Printing

– Printing variable values (p <variable_name>)

– Printing addresses (p &<variable_name>)

35

GDB – Manage breakpoints

• Display all breakpoints set (info b)

• Delete a breakpoint (d <breakpoint num>)

• Disable a breakpoint (disable <breakpoint num>)

• Enable breakpoint (enable <breakpoint_num>)

36

GDB – Step in

– Steps inside a function call (s)

37

GDB – Step out

– Jump to return address (finish)

38

GDB

– GNU Debugger – A tool for inspecting your

C/C++ programs

• How to begin inspecting a program using gdb?

• How to control the execution?

• How to display, interpret, and alter memory

contents of a program using gdb?

• Misc – displaying stack frames, visualizing

assembler code.

39

GDB – Memory dump

– Printing memory content (x/nfu <address>)

• n = repetition (number of bytes to display)

• f = format (‘x’ – hexadecimal, ‘d’-decimal, etc.)

• u = unit (‘b’ – byte, ‘h’ – halfword/2 bytes, ‘w’ –

word/4 bytes, ‘g’ – giga word/8 bytes)

• E.g. x/16xb 0x7fffffffc500 (display the

values of 16 bytes stored from starting address

0x7..c500 and show them in hexa-decimal)

40

GDB – Printing addresses

– Registers ($rsp, $rbp)

• Note that we use the ‘x’ command and not the ‘p’

command.

41

GDB – Altering memory content

– Set command (set variable <name> =
value)

– Set command (set *(<type *>addr) =
value)

42

GDB

– GNU Debugger – A tool for inspecting your

C/C++ programs

• How to begin inspecting a program using gdb?

• How to control the execution?

• How to display, interpret, and alter memory

contents of a program using gdb?

• Misc – displaying stack frames, visualizing

assembler code.

43

Concluding Remarks: CS406 in

Spring 2022

• What we did not study

– Algorithms for fast buffering (lexical analysis)

– LR(1), LALR, etc. (Syntactic analysis)

– Syntax directed translation (attributes and attribute grammar)

– Type systems (code generation)

– Runtime environment and Garbage Collection

– Operational and Denotational Semantics

– Points-to analysis, shape-analysis (optimization) etc.

44

46

