
CS316: Compilers Lab
Programming Assignment 6: Functions, Due: 11/4/2022

1 Introduction
Your goal in this step is to generate code to handle programs with multiple functions. This means you will
have to handle two aspects: (i) what should a caller function do to prepare for calling a subroutine; (ii) what
should a callee function do to set up its local variables and environment?

1.1 Function Calls
The primary mechanism for handling function calls is the program stack, which is where the local environment
(activation record or frame) for each currently executing function (i.e., functions that have started executing
but have not yet returned) is stored. Week 9 slides provide more details about how this program stack
works.

1.2 Activation Records
An activation record, or frame, stores all of the data required to execute a function. In particular, this means
that the activation record stores all of the local variables in a function.

We declare global variables with var declarations in Tiny code, but that doesn’t work for local variables.
Why? Because a local variable is specific to that function invocation – it’s not global. Consider what would
happen if you wrote a recursive function: the two versions of that recursive function each need their own
copy of their local variables.

An activation record is delimited by two “pointers”: the stack pointer (which is controlled with the instructions
push and pop) and the frame pointer (which is controlled with the instructions link and unlink). The stack
pointer points to the “top” of the stack, while the frame pointer points to the “base” of the activation
record.

Local variables (as well as arguments to a function, and its return value) are assigned ‘slots” on the stack
relative to the frame pointer. When you access a local variable x, you won’t access a memory location named
x (as if it were a global variable); instead, you’ll access a memory location that is “3 slots below the frame
pointer”

In our stack organization, the stack conceptually grows “down”. Local variables thus have negative offsets
from the frame pointer, while arguments and return values have positive offsets from the frame pointer

You will need to augment your symbol table to maintain a mapping between each local variable and its slot
in an activation record. (Don’t forget to reset the slot counter for each new function!)

We recommend that you draw out the program stack for a simple program to understand how to correctly
generate code for it.

1.3 Implementing a function call
You can divide up the work done for a function call into two responsibilities: those of the caller and those
of the callee. Here is what each one needs to do:

Caller before the call

1. Push any registers that you want to save on the stack (using push)

2. Push a space on the stack for the return value of the callee

1

https://hegden.github.io/cs406/slides/week9.pdf

3. Push any arguments onto the stack

4. Call the function (using jsr)

Note: in some of the outputs, step 1 is performed after 2 and 3; this is fine, as long as you are consistent
and are able to correctly know where arguments/return values are

Callee

1. Allocate space on the stack for all the local variables (using link)

2. Generate code, accessing local variables and arguments to the function relative to the frame pointer
(Use $-n to access slots below the frame pointer, with n replaced with the slot location, and $n to
access slots above the frame pointer)

3. When returning from the function, save the return value (if any) in the appropriate slot “above” the
frame pointer (remember how the caller set up its portion of the stack).

4. Deallocate the activation record (using unlink)

5. Return to the caller (using ret)

Caller after the call

1. Pop arguments off the stack

2. Pop the return value of the stack, remembering to store it in an appropriate place (local variable, global
variable, register, etc., as needed by the source code)

3. Pop any saved registers off the stack.

In this step, your code generation strategy likely means that no registers actually need to be saved on the
stack by the caller, because none are “live” across the function call. If you choose not to save registers in this
step, remember to add that functionality back in for the next step (register allocation)

Testing your Tiny code You can test your Tiny code by using the same simulator as in the previous
step. Your compiler will be tested against the inputs that we provide with the starter files and also some
hidden test cases.

2 What you need to do
In this step, you will be generating assembly code for function calls, as described above. You should cor-
rectly be able to handle functions with return values, functions where complex expressions are passed in as
arguments (store the result in a temporary, then push that temporary onto the stack as the argument), and
recursive functions.

Handling errors All the inputs we will give you in this step will be valid programs. We will also ensure
that all expressions are type safe: a given expression will operate on either INTs or FLOATs, but not a mix,
and all assignment statements will assign INT results to variables that are declared as INTs (and respectively
for FLOATs).

Sample inputs and outputs are provided to you along with the starter files that you need to get started on
this assignment. These contain a test case with non recursive functions (fma) and couple of test cases with
recursive functions factorial2 and fibonacci.

2

Grading In this step, we will only grade your compiler on the correctness of the generated code. We will
run your generated code through the Tiny simulator and check to make sure that you produce the same
result as our code. When we say result, we mean the outputs of any WRITE statements in the program
(not details such as how many cycles the code uses, how many registers, etc.)

We will not check to see if you generate exactly the same code that we do – no need to diff anything. We only
care if your generated code works correctly. You may generate slightly different code than we did.

3 What you need to submit
• Place all the necessary code for your compiler that you wrote yourself. You do not need to include the

ANTLR jar files if you are using ANTLR.

• A Makefile with the following targets:

1. compiler: this target will build your compiler. If you are using ANTLR, this should create a
.jar file. (-1 for warnings)

2. clean: this target will remove any intermediate files that were created to build the compiler. (-1
for not doing the clean properly)

3. dev: this target will print the same information that you printed in previous PA.

• A shell script (this must be written in bash) called runme that runs your compiler. This script should
take in two arguments: first, the input program file to be compiled and second, the filename where you
want to put the compiler. You can assume that we will have run make compiler before running this
script.

• You should tag your programming assignment submission as cs316pa6submission

While you may create as many other directories as you would like to organize your code or any intermediate
products of the compilation process, both your Makefile and your runme script should be in the root
directory of your repository.

Do not submit any binaries. Your git repo should only contain source files; no products of compilation. If
you have a folder named test in your repo, it will be deleted as part of running our test script (though the
deletion won’t get pushed) – make sure no code necessary for building/running your compiler is in such a
directory.

3

	Introduction
	Function Calls
	Activation Records
	Implementing a function call

	What you need to do
	What you need to submit

