
CS406: Compilers
Spring 2021

Week 7: 3 Address Codes, IR code for expressions, if-
statement

1

3 Address Code (3AC)

• What is it? sequence of elementary program instructions
• Linear in structure (no hierarchy) unlike AST

• Format:

op A, B, C //means C = A op B.

//op: ADDI, MULI, SUBF, DIVF, GOTO, STOREF etc.

• E.g.

program text 3-address code

2

ADDF x y T1
STOREF T1 z

INT x;
FLOAT y, z;
z:=x+y;

DIVI b c T1
SUBI a T1 T2
STOREI T2 d

INT a, b, c, d;
d = a-b/c;

Comments:
d = a-b/c; is broken into:
t1 = b/c;
t2 = a–t1;
d = t2;

3 Address Code (3AC)

• Why is it needed? To perform significant optimizations such
as:
• common sub-expression elimination

• statically analyze possible values that a variable can take etc.

How?

Break the long sequence of instructions into “basic blocks” and
operate on/analyze a graph of basic blocks

3

3 Address Code (3AC)

• How is it generated? Choices available:
1. Do a post-order walk of AST

• Generate/Emit code as a string/data_object when you visit a node

• Pass the code to the parent node

Parent generates code for self after the code for children is
generated. The generated code is appended to code passed by
children and passed up the tree

2. Can generate directly in semantic routines or after building AST
4

data_object generate_code() {
//preprocessing code
data_object lcode=left.generate_code();
data_object rcode=right.generate_code();
return generate_self(lcode, rcode);

}

3 Address Code (3AC)

• Generating 3AC directly in semantic routines.

• Walk the AST in post-order and infer at an internal node
(labelled op) that it computes a constant expression

5

MULI 3 4 T1
ADDI T1 5 T2
ADDI T2 6 T3
ADDI T3 7 T4
STOREI T4 x

INT x;
x:=3*4+5+6+7;

Comments:
x = 3*4+5+6+7 is broken into:
t1 = 3*4;
t2 = 5+t1;
t3 = 6+t2;
t4 = 7+t3;
x = t4

STOREI 30 x
INT x;
x:=3*4+5+6+7;

Comments:

6 7

+

L-values and R-values

• Need to distinguish between meaning of identifiers
appearing on RHS and LHS of an assignment statement

• L-values: addresses which can be loaded from or stored into

• R-values: data often loaded from address
• Expressions produce R-values

• Assignment statements: L-value := R-value;

6

i := 5;
i := i + 1;

//RHS specifies data that is computed/read.
LHS specifies address where data is stored.

a refers to memory location named
a. We are storing into that memory
location (L-value)

a refers to data stored in the memory
location named a. We are loading from
that memory location to produce R-value

a := a;

Temporaries

• Earlier saw the use of temporaries e.g.

• Think of them as unlimited pool of registers with memory
to be allocated later

• Optionally declare them in 3AC. Name should be unique
and should not appear in program text

• Temporary can hold L-value or R-value

7

ADDF x y T1
STOREF T1 z

INT x;
FLOAT y, z;
z:=x+y;

INT x
FLOAT y z T1
ADDF x y T1
STOREF T1 z

Temporaries and L-value

• Yes, a temporary can hold L-value. Consider:

Take L-value of b, don’t load from it, treat it as an R-value and
store the resulting data in a temporary

8

a := &b; //& is address-of operator. R-value
of a is set to L-value of b.
//expression on the RHS produces data that is
an address of a memory location.

Recall: L-Value = address which can be loaded
from or stored into, R-Value = data (often)
loaded from addresses.

Dereference operator

• Consider:

a appearing on LHS is loaded from to produce R-value. That
R-value is treated as an address that can be stored into.

Take R-value of a, treat it as an L-value (address of a memory
location) and then store RHS data

9

a := b; // is dereference operator. R-value
of a is set to R-value of b.
//expression on the LHS produces addressdata
that is an address of a memory location.

Summary: pointer operations & and * mess with meaning of L-value and R-values

Observations

• Identifiers appearing on LHS are (normally) treated as L-
values. Appearing on RHS are treated as R-values.

• So, when you are visiting an id node in an AST, you cannot
generate code (load-from or store-into) until you have seen how
that identifier is used. => until you visit the parent.

• Temporaries are needed to store result of current
expression

• a data_object should store:
• Code
• L-value or R-Value or constant
• Temporary storing the result of the expression

10

11

Slide courtesy: Milind Kulkarni

12

Slide courtesy: Milind Kulkarni

Example - assignment statement

13

w:=x+y*(z+3);

AST for

Visit Node a:
Temp: w

Type: l-value

Code: --

Example - assignment statement

14

w:=x+y*(z+3);

AST for

Visit Node b:
Temp: x

Type: l-value

Code: --

Example - assignment statement

15

w:=x+y*(z+3);

AST for

Visit Node c:
Temp: y

Type: l-value

Code: --

Example - assignment statement

16

w:=x+y*(z+3);

AST for

Visit Node d:
Temp: z

Type: l-value

Code: --

Example - assignment statement

17

w:=x+y*(z+3);

AST for

Visit Node e:
Temp: 3

Type: constant

Code: --

Example - assignment statement

18

w:=x+y*(z+3);

AST for

Visit Node f:
Temp: T1

Type: R-value

Code:

LD z T2

ADD T2 3 T1

Example - assignment statement

19

w:=x+y*(z+3);

AST for

Visit Node g:
Temp: T3

Type: R-value

Code:

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

Example - assignment statement

20

w:=x+y*(z+3);

AST for

Visit Node h:
Temp: T5

Type: R-value

Code:

LD x T6

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

ADD T6 T4 T5

Example - assignment statement

21

w:=x+y*(z+3);

AST for

Visit Node i:
Temp: NA

Type: NA

Code:

LD x T6

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

ADD T6 T4 T5

ST T5 w

22

Slide courtesy: Milind Kulkarni

23

Slide courtesy: Milind Kulkarni

24

Slide courtesy: Milind Kulkarni

25

Slide courtesy: Milind Kulkarni

Code-generation – if-statement

26

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSIF (TRUE)

b := 2;
ENDIF

STOREI 2 T1 //a := 2
STOREI T1 a
STOREI 1 T2 //a = 1?
NE a T2 label1
STOREI 1 T3 //b := 1
STOREI T3 b
JUMP label2 //to out label
LABEL label1 //elsif label
STOREI 1 T4 //TRUE can be handled by checking 1 = 1?
STOREI 1 T5
NE T4 T5 label3 //jump to the next elsif label
STOREI 2 T6 //b := 2
STOREI T6 b
JUMP label2 //jump to out label
LABEL label2 //out label

Program text 3AC

27

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman: Compilers:
Principles, Techniques, and Tools, 2/E, AddisonWesley 2007

• Chapter 2 (2.8), Chapter 6(6.2, 6.3, 6.4)

• Fisher and LeBlanc: Crafting a Compiler with C
• Chapter 7 (7.1, 7.3), Chapter 11 (11.2)

Suggested Reading

