CS406: Compilers Spring 2021

Week 4: Parsers

Parsing – so far..

- · Parsing involves:
 - identifying if a program has syntax errors
 - Identifying the structure of a valid program
- CFGs are formal notations for specifying the rules of the programming language
 - Has symbols (start, terminal(s), non-terminal(s)), and productions/rules
 - Derivations are a sequence of expansions of a string of symbols
 Left-most derivation and Right-most derivation are popular
 methods defining the order in the sequence

Parsing – so far..

- Parse trees are tree structures having terminals as leaves and non-terminals as nodes
 - The sequence involved in derivations define them
 - For a given string having terminal symbols only, there exists only one parse tree in an unambiguous grammar
 - A grammar is ambiguous if there exists some string for which different derivations result in more than one tree structure
- Ambiguity fixing in grammars
 - Manual rewriting of grammar
 - Hints to parser generators
- · Error handling in parsers
 - Panic mode, error productions, and error recovery.

- Idea: we know sentence has to start with initial symbol
- Build up partial derivations by *predicting* what rules are used to expand non-terminals
 - Often called predictive parsers
- If partial derivation has terminal characters, *match* them from the input stream

- Also called recursive-descent parsing
- Equivalent to finding the left-derivation for an input string
 - Recall: expand the leftmost non-terminal in a parse tree
 - Expand the parse tree in pre-order i.e., identify parent nodes before children

t: next symbol to be read

1: S -> cAd 2: A -> ab

3: | a

Step	Input string	Parse tree
1	cad	S

String: cad

Start with S

t: next symbol to be read

1: S -> cAd 2: A -> ab 3: | a

Step	Input string	Parse tree
1	cad	S
2	cad	S c A d

String: cad

Predict rule 1

t: next symbol to be read

1: S -> cAd 2: A -> ab 3: | a

String: cad

Step	Input string	Parse tree
1	cad	S
2	cad	S c A d
3	cad	S C A d a b

Predict rule 2

t: next symbol to be read

1: S -> cAd 2: A -> ab 3: | a

Step	Input string	Parse tree
1	cad	S
2	cad	S d
3	cad	S d d b

String: cad

No more non terminals! String doesn't match. Backtrack.

t: next symbol to be read

1: S -> cAd 2: A -> ab 3: | a

Step	Input string	Parse tree
1	çad	S
2	cad	S c A d

String: cad

t: next symbol to be read

1: S -> cAd 2: A -> ab

3: | a

String: cad

Step	Input string	Parse tree
1	cad	S
2	cad	S c A d
4	cad	S c A d a

Predict rule 3

Top-down Parsing – Table-driven Approach

string: (a+a)

string': (a+a)\$

	()	а	+	\$
S	2	-	1	ı	ı
F	-	-	3	-	-

Assume that the table is given.

Table-driven (Parse Table) approach doesn't require backtracking

But how do we construct such a table?

Important Concepts: First Sets and Follow Sets

13

Concepts for analyzing the grammar

First and follow sets

• First(α): the set of terminals (and/or λ) that begin all strings that can be derived from α

• First(A) = $\{x, y, \lambda\}$

 $S \rightarrow A B$ \$

• First(xaA) = $\{x\}$

 $A \rightarrow x a A$

• First (AB) = $\{x, y, b\}$

 $A \rightarrow y a A$

 $= \{x, y, b\}$

 $A \rightarrow \lambda$

 Follow(A): the set of terminals (and/ or \$, but no λs) that can appear immediately after A in some partial derivation

 $B \rightarrow b$

• $Follow(A) = \{b\}$

First and follow sets

- First(α) = { $a \in V_t \mid \alpha \Rightarrow^* a\beta$ } \cup { $\lambda \mid \text{if } \alpha \Rightarrow^* \lambda$ }
- Follow(A) = $\{a \in V_t \mid S \Rightarrow^+ ... Aa ...\} \cup \{\$ \mid \text{if } S \Rightarrow^+ ... A \$\}$

S: start symbol

a: a terminal symbol

A: a non-terminal symbol

 α,β : a string composed of terminals and non-terminals (typically, α is the RHS of a production

derived in 1 step

⇒*: derived in 0 or more steps

⇒⁺: derived in I or more steps

Computing first sets

- Terminal: $First(a) = \{a\}$
- Non-terminal: First(A)
 - Look at all productions for A

$$A \to X_1 X_2 ... X_k$$

- First(A) \supseteq (First(X_I) λ)
- If $\lambda \in First(X_1)$, $First(A) \supseteq (First(X_2) \lambda)$
- If λ is in First(X_i) for all i, then $\lambda \in First(A)$
- Computing First(α): similar procedure to computing First(A)

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

$$S \rightarrow A B c$$

$$A \rightarrow x a A$$
special "end of input" symbol

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \rightarrow b$$
 • A sentence in the grammar:

$$B \rightarrow \lambda$$
 x a c c \$

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

 $B \rightarrow b$ • A sentence in the grammar:

$$B \rightarrow \lambda$$
 $\times a c c$ \$

Current derivation: S

 $S \rightarrow A B c$ \$

 $A \rightarrow x a A$

 $A \rightarrow y a A$

 $A \rightarrow c$

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ x a c c \$

Current derivation: A B c \$

Predict rule

 $S \rightarrow A B c$ \$

Choose based on first set of rules

 $A \rightarrow \times a A$ $A \rightarrow y a A$ $A \rightarrow c$

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ x a c c \$

Current derivation: x a A B c \$

Predict rule based on next token

 $S \rightarrow A B c$ \$

 $A \rightarrow x a A$

 $A \rightarrow y a A$

 $A \rightarrow c$

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ xacc\$

Current derivation: x a A B c \$

Match token

 $S \rightarrow A B c$ \$

 $A \rightarrow x a A$

 $A \rightarrow y a A$

 $A \rightarrow c$

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ $\times acc$

Current derivation: x a A B c \$

Match token

 $S \rightarrow A B c$ \$

Choose based on first set of rules

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ xacc\$

Current derivation: x a c B c \$

Predict rule based on next token

 $S \rightarrow A B c$ \$

 $A \rightarrow x a A$

 $A \rightarrow y a A$

 $A \rightarrow c$

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ x a c c \$

Current derivation: x a c B c \$

Match token

$$S \rightarrow A B c$$
\$

 $A \rightarrow x a A$

Choose based on follow set

 $A \rightarrow y a A$

 $A \rightarrow c$

 $B \to b$ $B \to \lambda$

• A sentence in the grammar:

хасс\$

Current derivation: $x = c \lambda c$ \$

Predict rule based on next token

 $S \rightarrow A B c$ \$

 $A \rightarrow x a A$

 $A \rightarrow y a A$

 $A \rightarrow c$

 $B \rightarrow b$ • A sentence in the grammar:

 $B \rightarrow \lambda$ $\times a c c$ \$

Current derivation: x a c c \$

Match token

$$S \rightarrow A B c$$
\$

$$A \rightarrow x a A$$

$$A \rightarrow y a A$$

$$A \rightarrow c$$

$$B \to b$$
 • A sentence in the grammar:

$$B \to \lambda \hspace{1cm} x \, a \, c \, c \, \$$$

Current derivation: x a c c \$

Match token

	()	а	+	\$
S	2	-	1	-	-
F	-	-	3	-	-

Assume that the table is given.

Table-driven (Parse Table) approach doesn't require backtracking

But how do we construct such a table?

First and follow sets

• First(α): the set of terminals (and/or λ) that begin all strings that can be derived from α

• First(A) = $\{x, y, \lambda\}$

 $S \rightarrow A B$ \$

• First(xaA) = $\{x\}$

 $A \rightarrow x a A$

• First (AB) = {x, y, b}

 $A \rightarrow y a A$

• Follow(A): the set of terminals (and/

 $A \rightarrow \lambda$

immediately after A in some partial derivation

or \$, but no λ s) that can appear

 $B \rightarrow b$

• Follow(A) = {b}

First and follow sets

- First(α) = { $a \in V_t \mid \alpha \Rightarrow^* a\beta$ } \cup { $\lambda \mid \text{if } \alpha \Rightarrow^* \lambda$ }
- Follow(A) = $\{a \in V_t \mid S \Rightarrow^+ ... Aa ...\} \cup \{\$ \mid \text{if } S \Rightarrow^+ ... A \$\}$

S: start symbol

a: a terminal symbol

A: a non-terminal symbol

 α,β : a string composed of terminals and non-terminals (typically, α is the RHS of a production

derived in 1 step

 \Rightarrow^* : derived in 0 or more steps

⇒⁺: derived in 1 or more steps

Towards parser generators

- Key problem: as we read the source program, we need to decide what productions to use
- Step I: find the tokens that can tell which production P (of the form $A \rightarrow X_1 X_2 ... X_m$) applies

```
 \begin{aligned} & \operatorname{Predict}(P) = \\ & \left\{ \begin{array}{ll} \operatorname{First}(X_1 \dots X_m) & \text{if } \lambda \not \in \operatorname{First}(X_1 \dots X_m) \\ & (\operatorname{First}(X_1 \dots X_m) - \lambda) \cup \operatorname{Follow}(A) & \text{otherwise} \end{array} \right. \end{aligned}
```

• If next token is in Predict(P), then we should choose this production