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CS406: Compilers
Spring 2021

Week 4: Parsers
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Parsing – so far..

• Parsing involves: 

– identifying if a program has syntax errors

– Identifying the structure of a valid program

• CFGs are formal notations for specifying the rules of the 

programming language

– Has symbols (start, terminal(s), non-terminal(s)), and 

productions/rules

– Derivations are a sequence of expansions of a string of symbols

Left-most derivation and Right-most derivation are popular     

methods defining the order in the sequence  
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Parsing – so far..

• Parse trees are tree structures having terminals as 

leaves and non-terminals as nodes

– The sequence involved in derivations define them

– For a given string having terminal symbols only, there exists only 

one parse tree in an unambiguous grammar

• A grammar is ambiguous if there exists some string for which 

different derivations result in more than one tree structure

• Ambiguity fixing in grammars

– Manual rewriting of grammar

– Hints to parser generators

• Error handling in parsers

– Panic mode, error productions, and error recovery.
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Top-down Parsing
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Top-down Parsing

• Also called recursive-descent parsing

• Equivalent to finding the left-derivation for an 

input string

– Recall: expand the leftmost non-terminal in a parse 

tree

– Expand the parse tree in pre-order i.e., identify 

parent nodes before children
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Start with S

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 1

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 2

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

8



9

Top-down Parsing

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

No more non terminals! 

String doesn’t match. 

Backtrack.
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 3

Step Input string Parse tree

1 cad S

2 cad

4 cad

S

c A d

S

c A d

a

S

c A d

S

c A d

a

S

c A d

S

c A d

a

: next symbol to 

be read
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Top-down Parsing – Table-driven 

Approach

1: S -> F
2: S -> (S + F)
3: F -> a

• Table-driven (Parse Table) approach doesn’t require 

backtracking

string: (a+a)

( ) a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?
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Important Concepts: First Sets and 

Follow Sets

Concepts for analyzing the grammar
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Top-down Parsing

1) S -> F
2) S -> (S + F)
3) F -> a

• Table-driven (Parse Table) approach doesn’t require 

backtracking

string: (a+a)

( ) a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?
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