
1

CS406: Compilers
Spring 2021

Week 4: Parsers

1

Parsing – so far..

• Parsing involves:

– identifying if a program has syntax errors

– Identifying the structure of a valid program

• CFGs are formal notations for specifying the rules of the

programming language

– Has symbols (start, terminal(s), non-terminal(s)), and

productions/rules

– Derivations are a sequence of expansions of a string of symbols

Left-most derivation and Right-most derivation are popular

methods defining the order in the sequence

2

2

Parsing – so far..

• Parse trees are tree structures having terminals as

leaves and non-terminals as nodes

– The sequence involved in derivations define them

– For a given string having terminal symbols only, there exists only

one parse tree in an unambiguous grammar

• A grammar is ambiguous if there exists some string for which

different derivations result in more than one tree structure

• Ambiguity fixing in grammars

– Manual rewriting of grammar

– Hints to parser generators

• Error handling in parsers

– Panic mode, error productions, and error recovery.

3

3

4

Top-down Parsing

4

5

Top-down Parsing

• Also called recursive-descent parsing

• Equivalent to finding the left-derivation for an

input string

– Recall: expand the leftmost non-terminal in a parse

tree

– Expand the parse tree in pre-order i.e., identify

parent nodes before children

5

6

Top-down Parsing

1: S -> cAd
2: A -> ab
3: | a

String: cad

Start with S

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to

be read

6

7

Top-down Parsing

1: S -> cAd
2: A -> ab
3: | a

String: cad

Predict rule 1

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to

be read

7

8

Top-down Parsing

1: S -> cAd
2: A -> ab
3: | a

String: cad

Predict rule 2

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to

be read

8

9

Top-down Parsing

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to

be read

1: S -> cAd
2: A -> ab
3: | a

String: cad

No more non terminals!

String doesn’t match.

Backtrack.

9

10

Top-down Parsing

1: S -> cAd
2: A -> ab
3: | a

String: cad

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to

be read

10

11

Top-down Parsing

1: S -> cAd
2: A -> ab
3: | a

String: cad

Predict rule 3

Step Input string Parse tree

1 cad S

2 cad

4 cad

S

c A d

S

c A d

a

S

c A d

S

c A d

a

S

c A d

S

c A d

a

: next symbol to

be read

11

12

Top-down Parsing – Table-driven

Approach

1: S -> F
2: S -> (S + F)
3: F -> a

• Table-driven (Parse Table) approach doesn’t require

backtracking

string: (a+a)

() a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?

12

13

Important Concepts: First Sets and

Follow Sets

Concepts for analyzing the grammar

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

Top-down Parsing

1) S -> F
2) S -> (S + F)
3) F -> a

• Table-driven (Parse Table) approach doesn’t require

backtracking

string: (a+a)

() a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?

29

30

30

31

31

32

32

