CS406: Compilers

Spring 2021

Week 4: Parsers

Parsing — so far..

» Parsing involves:
— identifying if a program has syntax errors
— Identifying the structure of a valid program

» CFGs are formal notations for specifying the rules of the
programming language
— Has symbols (start, terminal(s), non-terminal(s)), and
productions/rules
— Derivations are a sequence of expansions of a string of symbols
Left-most derivation and Right-most derivation are popular

methods defining the order in the sequence

Parsing — so far..

» Parse trees are tree structures having terminals as
leaves and non-terminals as nodes
— The sequence involved in derivations define them
— For a given string having terminal symbols only, there exists only
one parse tree in an unambiguous grammar
» A grammar is ambiguous if there exists some string for which
different derivations result in more than one tree structure
* Ambiguity fixing in grammars
— Manual rewriting of grammar
— Hints to parser generators

» Error handling in parsers
— Panic mode, error productions, and error recovery.

Top-down Parsing

® |dea: we know sentence has to start with initial symbol

® Build up partial derivations by predicting what rules are used
to expand non-terminals

e Often called predictive parsers

® |f partial derivation has terminal characters, match them
from the input stream

Top-down Parsing

» Also called recursive-descent parsing

* Equivalent to finding the left-derivation for an
input string
— Recall: expand the leftmost non-terminal in a parse
tree

— Expand the parse tree in pre-order i.e., identify
parent nodes before children

t: next symbol to
be read

1: S -> cAd
2: A -> ab
3: | a

String: cad

Start with S

Top-down Parsing

Step | Input string | Parse tree

1 cad
)

S

Top-down Parsing

t: next symbol to Step |Input string | Parse tree
be read
1: S -> cAd 1 (f:ad sS
2: A -> ab 2 cad
3 | % TN
. d c A d
String: cad

Predict rule 1

t: next symbol to
be read

1: S -> cAd
2: A -> ab
3: | a

String: cad

Predict rule 2

Top-down Parsing

Step | Input string | Parse tree
1 cad S
T S
2 cad
¢ TN
C A d
3 cad S
t AT
C A d
SN
a b

t: next symbol to
be read

1: S -> cAd

2: A -> ab
3: | a

String: cad

Top-down Parsing

Step | Input string | Parse tree
1 cad S
T S
2 cad
¢ TN
C A d
3 cad S
t AT
C A d
SN
a b

No more non terminals!
String doesn’t match.
Backtrack.

t: next symbol to
be read

1: S -> cAd

2: A -> ab
3: | a

String: cad

Top-down Parsing

Step | Input string | Parse tree

1 cad

2 (T:ad
4

Cc

S

S
PR

A d

10

10

t: next symbol to
be read

1: S -> cAd
2: A -> ab
3: | a

String: cad

Predict rule 3

Top-down Parsing

Step | Input string | Parse tree
1 cad S
T S
2 cad
t TN
C A d
4 cad
% S
PR
c A d
al

11

11

Top-down Parsing — Table-driven
Approach

1: S -> F (D la |+ |$
2: S -> (S + F)

3: F -> a S (2 |- |1 |- |-
string: (a+a) E (- [- |3 |- |-
string’: (a+a)$ Assume that the table is given.

+ Table-driven (Parse Table) approach doesn’t require
backtracking

But how do we construct such a table?

12

Important Concepts: First Sets and
Follow Sets

13

Concepts for analyzing the grammar

13

First and follow sets

® First(x): the set of terminals (and/or
A) that begin all strings that can be
derived from o

® First(A) = {x,y, A}
® First(xaA) = {x}
¢ First (AB) = {x,y, b}

® Follow(A): the set of terminals (and/
or $,but no As) that can appear
immediately after A in some partial
derivation

® Follow(A) = {b}

S—ABS$
A —xaA
A—yaA
A—A
B—b

14

14

First and follow sets

* First(o) =faeVe| a="aBhu A if =" N}

e Follow(A)={aeV:|S=". Aa.}u{$|ifS=". A%}

Q> w

start symbol

a terminal symbol

a non-terminal symbol

a string composed of terminals and

non-terminals (typically, & is the

RHS of a production =: derivedin | step

s

=" derived in 0 or more steps

=71 derivedin | or more steps

15

15

Computing first sets

Terminal: First(a) = {a}
Non-terminal: First(A)
® |ook at all productions for A
A= XiXa... Xk
e First(A) 2 (First(X)) - A)
® If A e First(X)), First(A) 2 (First(Xa) - A)
e If Ais in First(X) for all i, then A € First(A)

Computing First(of): similar procedure to computing
First(A)

16

16

A simple example
S—-ABcS
A — xaA
A—yaA
A—-c

B—b ® A sentence in the grammar:

B—A xacc$

17

17

A simple example

S—ABc§

A—xahA special “end of input” symbol
A—yaA

A—c

B—b ® A sentence in the grammar:
B— A xacc$

18

18

A simple example
S—ABc}$
A - xaA
A —yaA
A-c

B—b ® A sentence in the grammar:

B—oA xacc$

Current derivation: S

19

19

A simple example
S—+ABc$
A —xaA
A —yaA
A—-c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: ABc $

Predict rule

20

20

A simple example
S—+ABc$

A — xaA

Choose based on
first set of rules

A —yaA
A—c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xaABc $

Predict rule based on next token

21

21

A simple example
S—ABcS
A —xaA
A —yaA
A—c

B—b ® A sentence in the grammar:

B—A xacc$

Current derivation: xaABc$

Match token ‘

22

22

A simple example
S—ABc$
A xaA
A —yaA
A—-c

B—b ® A sentence in the grammar:

B—- A xacc$

Current derivation: xaABc$

Match token

23

23

A simple example
S—»ABcS

A = xaA

Choose based on
first set of rules

A2 yaA

A—c

B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacBc $

Predict rule based on next token

24

24

A simple example
S—-ABc$
A—xaA
A—yaA
A—c

B—-b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacBc¢ $

Match token

25

25

A simple example

S—ABc$
A—xaA
Choose based on
follow set A— Y aA
A—c
B—b

B—A

® A sentence in the grammar:

xacc$

Current derivation: xacAc $

Predict rule based on next token

26

26

A simple example
S—+ABc$
A — xaA
A —yaA
A—c

B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacc $

Match token

27

27

A simple example
S—-ABc$
A — xaA
A—yaA
A—-c

B—-b ® A sentence in the grammar:

B—A xacc$

Current derivation: xacc $

Match token

28

28

Top-down Parsing

1) S -> F (D |la [+ |$
2) S -> (S + F)

3) F->a S |2 |- |1 |- |-
string: (a+a) E (- [- |3 |- |-
string’: (a+a)$ Assume that the table is given.

+ Table-driven (Parse Table) approach doesn’t require
backtracking

But how do we construct such a table?

29

29

First and follow sets

® First(x): the set of terminals (and/or
A) that begin all strings that can be
derived from o

® First(A) = {x,y, A}
® First(xaA) = {x}
¢ First (AB) = {x,y, b}

® Follow(A): the set of terminals (and/
or $,but no As) that can appear
immediately after A in some partial
derivation

® Follow(A) = {b}

S—ABS$
A —xaA
A—yaA
A—A
B—b

30

30

First and follow sets

* First(o) =faeVe| a="aBhu A if =" N}

e Follow(A)={aeV:|S=". Aa.}u{$|ifS=". A%}

Q> w

start symbol

a terminal symbol

a non-terminal symbol

a string composed of terminals and

non-terminals (typically, & is the

RHS of a production =: derivedin | step

s

=" derived in 0 or more steps

=71 derivedin | or more steps

31

31

Towards parser generators

® ey problem: as we read the source program, we need to
decide what productions to use

® Step |:find the tokens that can tell which production P (of
the form A = X X; ... Xin) applies

Predict(P) =
First(X7... X;) if A& First(X...X,,)
(First(X1...X,,) — A) UFollow(A) otherwise

® |f next token is in Predict(P), then we should choose this
production

32

32

