
1

CS406: Compilers
Spring 2021

Week 3: Parsers

1

2

Parsers - Overview

• Also called syntax analyzers

• Determine two things:

1. Is a program syntactically valid?

• Is an English sentence grammatically

correct?

2. What is the structure of programming

language constructs? E.g. does the

sequence IF, ID(a), OP(<), ID(b),
{, ID(a), ASSIGN, LIT(5), }, ;, }

refer to an if-statement?

• Diagramming English sentences

2

3

Parsers - Overview

• Input: stream of tokens

• Output: Parse tree

– sometimes implicit

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

If-stmt

expr

expr)(

stmt-list

= 5b< 4a

}{

assign-stmt

Stream of tokens:

Parse tree:

if (a < 4)
{

b = 5
}

3

4

Parsers – what do we need to

know?

1. How do we define language constructs?

– Context-free grammars

2. How do we determine: 1) valid strings in the

language? 2) structure of program?

– LL Parsers, LR Parsers

3. How do we write Parsers?

– E.g. use a parser generator tool such as Bison

4

5

Center Embeddings in English

The bird flew

The bird the boy saw flew

The bird the boy the dog chased saw flew

The bird the boy the dog the man owned chased saw flew

The bird the boy the dog the man the woman loved owned chased
saw flew

...

Exercise: write a regular expression that match the pattern. Note: the

alphabets of your language are ‘Noun’, ‘Verb’ and ‘the’

You can construct arbitrarily long sentences like this in English.

5

6

Languages

• A language is (possibly infinite) set of strings

• Regular expressions describe regular languages

weakness: can’t describe a string of the form:

{ (i)i | i>=1}

Nested structures:

Parenthesized expressions: (((int x;)))

IF
IF
IF
FI

FI
FI

Programming language syntax is i.e. recursive

E.g. ((2+3)*5)

is C regular?

6

7

• Regular expressions can describe strings:
{ mod k | k = # states in FA}

1

1

“accept all strings having odd number of 1s”

Trivia

What FAs and regular expressions can do is describe strings of the form “odd

number of 1s”, they can determine parity but cannot count.

7

8

Context Free Grammar (CFG)

• Natural notation for describing recursive structure
definitions. Hence, suitable for specifying
language constructs.

• Consist of:

– A set of Terminals (T)

– A set of Non-terminals (N)

– A Start Symbol (S∈N)

– A set of Productions (X -> Y1..YN)
(aka. rules)

P:X Y1Y2Y3..YN | X∈N, Yi∈ N ⋃ T ⋃ ϵ/λ

8

9

Context Free Grammar (CFG)

• Grammar G = (T, N, S, P)

E.g. G = ({a,b}, {S, A, B}, S, {S AB, A Aa

A a, B Bb, B b})

• Implicit meanings

– First rule listed in the set of productions contains start symbol (on
the left-hand side)

– In the set of productions, you can replace the symbol X (appearing
on the right-hand side only) with the string of symbols that are on
the right-hand side of a rule, which has X (on the left-hand side)

9

10

Context Free Grammar (CFG)

1. Begin with only S as the initial string

2. Replace S

– S replaced with AB

3. Repeat 2 until the string contains only terminals

– AB replaced with aB

– aB replaced with bb

G = (T, N, S, P)
P:{ S->AB,

A->Aa,
A->a,
B->Bb,
B->b }

Summary: we move from S to a string of terminals through a series of transformations:

α0-> … -> αn where α1 . . . αn are strings

α0-> αn
*Shorthand notation:

10

11

Language of the Grammar

• Language L(G) of the context-free grammar G

– Set of strings that can be derived from S

– {a1a2a3..aN | ai∈T Ɐ i and }

– Is called context-free language

• All regular languages are context-free but not vice-versa.

• Can have many grammars generating same language.

S-> a1a2a3..aN
*

11

12

Context-Sensitive Grammar

• Can have context-sensitive grammar and

languages (think: aB->ab)

– Cannot replace right-hand side with left-hand side irrespective of

the context.

– E.g. aB->ab lays down a context: ‘a’ must be a prefix in order to

transform the string “aB” to a string of terminals “ab”

• ccaBb can be replaced by ccabb

Is grammar G context-free?

G = (T, N, S, P)
P:{ S->AB,

A->Aa,
A->a,
B->Bb,
B->b }

12

13

Does a string belong to the

Language?

• How do we apply the grammar rules to determine the

validity of a string? (i.e. string belongs to the language specified

by the context-free grammar)

• Begin with S

• Replace S

• Repeat till string contains terminals only

• Notation:

– We will use Greek letters to denote strings containing non-

terminals and terminals

L(G) must contain strings of terminals only

13

14

Slide courtesy: Milind Kulkarni

A -> Aa

| a

14

15

Slide courtesy: Milind Kulkarni

15

16

Exercise

Which of the below strings are accepted by the

grammar:

1. abcba

2. abcbca

3. abba

4. abca

1: A -> aAa
2: A -> bBb
3: A -> λ
4: B -> cA
5: B -> λ

1->2->4->3

1->2->5

16

17

Slide courtesy: Milind Kulkarni

17

18

CFG Contd..

• Is it enough if parsers answer “yes” or “no” to check if a

string belongs to context-free language?

– Also need a parse tree

• What if the answer is a “no”?

– Handle errors

• How do we implement CFGs?

– E.g. Bison

18

19

Slide courtesy: Milind Kulkarni

19

20

Parse Trees and String Derivations

• Recall: sequence of rules applied to produce a

string is a derivation

• A derivation defines a parse tree

– A parse tree may have many derivations

20

21

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

21

22

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Start with E, the start symbol Parse Tree

EE

22

23

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Replace E with E + E Parse Tree

E

E E+

E
E+E

23

24

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 2: Replace E with E * E Parse Tree

E

E E+

E E*

E
E+E
E*E+E

24

25

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E

25

26

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E
id*id+E

id

26

27

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id Parse Tree

E
E+E
E*E+E
id*E+E
id*id+E
id*id+id

E

E E+

E E*

id

id

id

27

28

Derivations and Parse Trees

• Note in previous slides:

– Replacement done on left-most non-terminal in the

string - called left-most derivation

– Terminals at leaves and non-terminal as interior

nodes

– Inorder traversal produces input string id*id+id
E

E E+

E E*

id

id

id

28

29

Derivations and Parse Trees

• Note in previous slides:

– Replacement done on left-most non-terminal in the

string - called left-most derivation

– Terminals at leaves and non-terminal as interior

nodes

– Inorder traversal produces input string id*id+id

– Parse tree shows association of operations. Input

string doesn’t

• * associated with identifiers in the subtree

(id * id)+id

E

E E+

E E*

id

id

id

29

30

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

– Using right-most derivations

i.e. replace the right-most non-terminal

1: E -> E + E
2: | E * E
3: | id

30

31

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Start with E, the start symbol

Parse Tree
E

E

31

32

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 2: Replace E with E+E

Parse Tree
E
E+E

E

E E+

32

33

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Replace E with id

Parse Tree
E
E+E
E+id

E

E E+

id

33

34

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with E * E

Parse Tree
E
E+E
E+id
E*E+id

E

E E+

id
E E*

34

35

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id

E

E E+

idE E*

id

35

36

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id
id*id+id

E

E E+

idE E*

idid

36

• We get the same parse tree using left-most and right-

most derivations.

– Every parse tree has left-most and right-most (and any random

order) derivations.

37

E

E E+

idE E*

idid

Derivations and Parse Trees

37

• We get the same parse tree using left-most and right-

most derivations.

– Every parse tree has left-most and right-most (and any random

order) derivations.

• But there could be a string (or more than one strings) for which

there exists derivations that would get different parse

trees
38

E

E E+

idE E*

idid

Derivations and Parse Trees

38

39

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Start with E, the start symbol

Parse Tree
E

E

39

40

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 2: Replace E with E*E

Parse Tree
E
E*E

E

E E*

Earlier it was replace E with E+E

40

41

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 1: Replace E with E+E

Parse Tree
E
E*E
E*E+E

E

E E*

E E+

41

42

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id

E

E E*

E E+

id

42

43

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id

E

E E*

E E+

id id

43

44

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E
2: | E * E
3: | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id
id*id+id

E

E E*

E E+

id

id

id

44

• Input string: id*id+id

• Inorder traversal of both trees produces the

same string 45

E

E E*

E E+

id

id

id

E

E E+

E E*

id

id

id

Derivations and Parse Trees

nowearlier

45

46

Ambiguous Grammar

• Grammar that produces more than one parse

tree for some string

1: E -> E + E
2: | E * E
3: | id

46

47

Ambiguity – what to do?

• Ignore it (let it be ambiguous)

– Give hints to other components of the compiler on how

to resolve it

• Fix it

– Manually

– May make the grammar complicated and difficult to

maintain

47

48

Ambiguity – ignore

• E -> E + E | id

• Associativity declaration in Bison:
%left +

E

E E+

id
E E+

id id

E

E E+

id
E E+

id id

E->E+E
E->id+E
E->id+E+E
E->id+id+E
E->id+id+id

Produces:
id+(id+id)

E->E+E
E->E+E+E
E->id+E+E
E->id+id+E
E->id+id+id

Produces:
(id+id)+id

Picks the parse tree on the right

48

49

Ambiguity - ignore

• E -> E + E | E * E | id

%left +
%left *

Tells that * has higher precedence over + and both are left

associative. So, we get the tree on left.

E

E E+

id
E E*

id id

E->E+E
E->id+E
E->id+E*E
E->id+id*E
E->id+id*id

Produces:
id+(id*id)

E

E E*

id
E E+

id id

E->E*E
E->E+E*E
E->id+E*E
E->id+id*E
E->id+id*id

Produces:
(id+id)*id

49

50

Ambiguity – fixing

• Rewrite as:

E controls generation of +

E’ controls generation of *. *’s are nested deeper in the parse tree.

E->E’+E
E’->id*E’
E’->id
E->E’
E’->id

E -> E’ + E | E’
E’ -> id * E’ | id

| (E) * E’ | (E)

E -> E + E
| E * E
| id

E

E’ E+

id E’* E’

id id

Is the above sequence left-

most or right-most derivation?

50

51

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for

the following String: if E1 then if E2 then S1 else S2

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

51

52

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for

the following String: if E1 then if E2 then S1 else S2

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

52

53

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for

the following String: if E1 then if E2 then S1 else S2

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

53

54

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for

the following

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

String: if E1 then if E2 then S1 else S2

STMT

if EXPR
then

E1

STMT

if
STMT

EXPR

then

else
STMT

E2
S1

S2

STMT

if EXPR
then

else
STMT

E1
S2

STMT

if EXPR
then

E2

STMT

S1

54

55

Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if E1 then if E2 then S1 else S2

STMT

if EXPR
then

E1

STMT

if
STMT

EXPR

then

else
STMT

E2
S1

S2

55

56

Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if E1 then if E2 then S1 else S2

STMT

if EXPR
then

else
STMT

E1
S2

STMT

if EXPR
then

E2

STMT

S1

56

57

Ambiguity Fixing - Exercise

Exercise: Rewrite the grammar to make it unambiguous.

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

57

58

Ambiguity Fixing - Exercise

Exercise: Rewrite the grammar to make it unambiguous.

1: STMT -> if EXPR then STMT
2: | if EXPR then STMT else STMT
3: | s1
4: | s2
5: EXPR -> e1 | e2

STMT -> MATCHED | OPEN
MATCHED -> if EXPR then MATCHED else MATCHED | s1 | s2
OPEN -> if EXPR then STMT | if EXPR then MATCHED else OPEN
EXPR -> e1 | e2

58

59

Error Handling

• Objective: detect invalid programs and provide

meaningful feedback to programmer

• Report errors accurately

• Recover from errors quickly

• Don’t slow down compilation

59

60

Error Types

• Many types of errors:

• Lexical – use int instead of INT

• Syntactic – extra brace inserted {

• Semantic – float sqr; sqr(2);

• Logical – use = instead of ==

60

61

Error Handling - Types

1. Panic mode

2. Error production

3. Automatic local or global correction

61

62

Panic Mode Error Handling

• Simplest, most popular

• Discards tokens until one from a set of

synchronizing tokens is found

• Synchronizing tokens have a clear role

e.g. semicolons, braces

• E.g. i= i++j

policy: while parsing an expression, discard all tokens

until an identifier is found. This policy skips the additional +

• Specifying policy in bison: error keyword

E -> E + E | (E) | id | error id | error

62

63

Error Productions

• Anticipate common errors

– 2 x instead of 2 *

• Augment the grammar

– E -> EE | …

• Disadvantages:

– Complicates the grammar

63

64

Error Corrections

• Rewrite the program – find a “nearby” correct

program
– Local corrections – insert a semicolon, replace a comma with

semicolon etc.

– Global corrections – modify the parse tree with “edit distance”

metric in mind

• Disadvantages?

– Implementation difficulty

– Slows down compilation

– Not sure if “nearby” program is intended

64

