
1

CS406: Compilers
Spring 2021

Week 2: Scanners

1

2

Scanner - Overview

• Also called lexers / lexical analyzers

• Recall: scanners

– See program text as a stream of letters

– break input stream up into a set of

tokens: Identifiers, reserved words,

literals, etc.

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

\tif (a<4) {\n\t\tb=5\n\t}

if (a < 4)
{

b = 5
}

Recall that the first step in compiler construction is lexical analysis or

scanning. We have lexers or scanners doing this job. Where scanners fit into

the overall compiler design is shown in the figure on the right. The compiler

sees the program text as a stream of letters, which are then grouped into

words or tokens. We get a set of tokens as output from the lexical analyzer.

The slide shows the input stream and corresponding output of scanner for the

code snippet shown in dashed box.

2

3

Scanner - Motivation

• Why have a separate scanner when you can

combine this with syntax analyzer (parser)?

– Simplicity of design

• E.g. rid parser of handling whitespaces

– Improve compiler efficiency

• E.g. sophisticated buffering algorithms for reading input

– Improve compiler portability

• E.g. handling ^M character in Linux (CR+LF in Windows)

3

4

Scanner - Tasks

1. Divide the program text into substrings or lexemes

– place dividers

2. Identify the class of the substring identified

– Examples: Identifiers, keywords, operators, etc.
• Identifier – strings of letters or digits starting with a letter

• Integer – non-empty string of digits

• Keyword – “if”, “else”, “for” etc.

• Blankspace - \t, \n, ‘ ‘

• Operator – (,), <, =, etc.

– Observation: substrings follow some pattern

Here is an overview of how they work. As a first step, you need to place

dividers at appropriate places in the input stream. You then get substrings or

lexemes. We are segmenting the program text. Once substrings are identified,

we need to categorize each substring. The categorization is done based on

predefined set of categories such as identifiers, keywords, operators etc. The

commonly accepted definition of each of these categories is shown in the

slide.

These definitions help us to identify patterns in substrings and classify the

substrings as say an identifier, operator etc.

4

5

Categorizing a Substring (

English Text)

• What is the English language analogy for class?

– Noun, Verb, Adjective, Article, etc.

– In an English essay, each of these classes can have a

set of strings.

– Similarly, in a program, each class can have a set of

substrings.

5

6

Exercise

• How many tokens of class identifier exist in the

code below?

for(int i=0;i<10;i++) {
printf(“hello”);

}

3

If you said 1 (for ‘i’), then it is incorrect because as we look at the input stream,

we encounter 3 ‘i’s. each of those ‘i’s is an identifier as per the definition of the

identifier defined earlier.

4 if printf is included.

6

7

Scanner Output

• A token corresponding to each lexeme

– Token is a pair: <class, value>

A string / lexeme / substring of program text

Scanner Parser
tokensProgram

E.g. int x = 0; (Keyword, “int”),
(Identifier, “x”),
(“=”),
(Integer, “0”),
(“;”)

In practice, you need two pieces of info: 1) substring and 2) its category. These

two pieces of info together form a ‘token’. In the slide, the value part of the pair

is lexeme. The class part is the category of the token. The set of tokens that

we get are passed on to parser. The example shows the set of tokens

produced assuming that we have the following classes: Keyword, Identifier, =,

Integer, ; Note that = and ; are separate classes having just a single string

belonging to the set. This is how we have defined these classes. We could

follow any other scheme of defining classes (e.g. = part of Operator).

7

8

Scanners – interesting examples

• Fortran (white spaces are ignored)

DO 5 I = 1,25

DO 5 I = 1.25

• PL/1 (keywords are not reserved)
DECLARE (ARG1, ARG2, . . ., ARGN);

• C++
Nested template: Quad<Square<Box>> b;

Stream input: std::cin >> bx;

DO Loop

Assignment statement

In Fortran, whitespaces are ignored. i.e. VAR1 is same as VA R1. The first

statement is a DO loop in Fortran, while the second statement is an

assignment statement. Do loops in fortran have the following syntax: “ do label

var = expr1, expr2, expr3 statements label continue”, where var is the loop

variable (often called the loop index) which must be integer. expr1 specifies

the initial value of var, expr2 is the terminating bound, and expr3 is the

increment (step).

In PL/1, the language designed by IBM, keywords are not reserved. This

means that we can have a code snippet such as “IF ELSE THEN

THEN=ELSE; ELSE ELSE=THEN; here, only the first, third, and sixth words

(excluding =) are keywords. Other example of PL/1 requires unbounded look-

ahead.

These examples taught us what not to do. ANSI C has a limit of 31 chars for

variable names. Still, some problems exist for e.g. C++.

8

9

Scanners – interesting examples

• How did we go about recognizing tokens in previous
examples?

– Scan left-to-right till a token is identified

– One token at a time: continue scanning the remaining
text till the next token is identified...

– So on…

We always need to look-ahead to identify tokens

….but we want to minimize the amount of look-ahead

done to simplify scanner implementation

No matter what, while scanning left-to-right and recognizing one token at a

time, we must do some amount of look-ahead to identify tokens.

In the case of PL/1, we have to do unbounded amount of lookahead. Because

DECLARE(ARG1,…,ARGN) = <array initializer here> statement would

interpret DECLARE as array and ARG1, …ARGN as array indices. DECLARE

(ARG1, ARG2,…,ARGN) without the assignment would interpret DECLARE as

a keyword declaring ARG1, ARG2, ..ARGN as variables.

9

10

Scanners – what do we need to

know?

1. How do we define tokens?

– Regular expressions

2. How do we recognize tokens?

– build code to find a lexeme that is a prefix and that

belongs to one of the classes.

3. How do we write lexers?

– E.g. use a lexer generator tool such as Flex

We learnt that each token is a pair of <class, value>. The ‘value’ is a substring

with some pattern that we define for the class of a substring/lexeme.

So, these patterns can be expressed with regular expressions.

We also need to translate these regular expressions to code so that the code

is able to identify a prefix of the program text as a lexeme and the one

belonging to one of the classes.

Fortunately, you don’t need to write code to translate regular expressions to

code. Automatic lexer generator tools such as Flex, ANTLR, JFlex generate

programs, which are pieces of code to identify tokens.

10

11

Regular Expressions

• Used to define the structure of tokens

• Regular sets:
Formal: a language that can be defined by regular

expressions

Informal: a set of strings defined by regular expressions

Start with a finite character set or Vocabulary (V). Strings
are formed using this character set with the following
rules:

As mentioned earlier, regular expressions are used to define the structure of

tokens in a programming language.

A regular set is a language that can be defined by a regular expression.

Informally, a regular set is a set of strings defined by regular expressions.

Regular Languages are those that can be defined by regular expressions.

Alternate / equivalent definitions are: a regular language is one that is

accepted by an NFA or by a DFA

What is a language? A set of strings.

11

12

Regular Expressions

- Strings are regular sets (with one element): pi 3.14159
– So is the empty string: λ (ɛ instead)

• Concatenations of regular sets are regular: pi3.14159

– To avoid ambiguity, can use () to group regexps together

• A choice between two regular sets is regular, using |:
(pi|3.14159)

• 0 or more of a regular set is regular, using *: (pi)*

• other notation used for convenience:
– Use Not to accept all strings except those in a regular set

– Use ? to make a string optional: x? equivalent to (x|λ)

– Use + to mean 1 or more strings from a set: x+ equivalent to xx*

– Use [] to present a range of choices: [1-3] equivalent to
(1|2|3)

slide courtesy: Milind Kulkarni

12

13

Regular Expressions for Lexical

Specifications

• Digit: D = (0|1|2|3|4|5|6|7|8|9) OR [0-9]

• Letter: L = [A-Za-z]

• Literals (integers or floats): -?D+(.D*)?

• Identifiers: (_|L)(_|L|D)*

• Comments (as in Micro): -- Not(\n)*\n

• More complex comments (delimited by ##, can

use # inside comment): ## ((#|λ) Not(#))* ##

slide courtesy: Milind Kulkarni

13

14

Scanner / Lexical Analyzer -

flowchart

Lexical specification Regular expressions

Implementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

Formalized through

translated by

produce

The black-box takes regular expressions and produces scanner software.

14

15

Scanner / Lexical Analyzer -

flowchart

Lexical specification Regular expressions

Implementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

Formalized through

translated by

produce OR becomes

Scanner Generators OR Hand-written code

help implementing

You may take the help of a scanner-generator tool to implement the black-box

or you may code the black-box yourself.

When you take the help of a scanner-generator tool such as Flex, you get a

program as output (the ‘Implementation’ box) that is your scanner software.

When you code yourself the internals of the Black-Box, you need not duplicate

the effort of the scanner generator i.e. you need not write code that when run,

outputs the scanner program (the ‘implementation’ box). Rather, you can

directly code the scanner program (and make the ‘Implementation’ box part of

your code.)

15

16

Scanner Generators

• Essentially, tools for converting regular

expressions into scanners

– Lex (Flex) generates C/C++ scanner program

– ANTLR (ANother Tool for Language Recognition)

generates Java program for translating program text

(JFlex is a less popular option)

– Pylexer is a Python-based lexical analyzer (not a

scanner generator). It just scans input, matches

regexps, and tokenizes. Doesn’t produce any program.

16

17

Lex (Flex)

slide courtesy: Milind Kulkarni

17

18

Lex (Flex)

Lexer Compiler

C Compiler

a.out

lex.l lex.yy.c

lex.yy.c a.out

input stream tokens

18

19

Lex (Flex)

• Format of lex.l

Declarations

%%

Translation rules

%%

Auxiliary functions

19

20

Lex (Flex)

slide courtesy: Milind Kulkarni

20

21

Lex (Flex)

slide courtesy: Milind Kulkarni

21

Demo

22

22

23

Recap…

• We saw what it takes to write a scanner:

– Specify how to identify token classes (using regexps)

– Convert the regexps to code that identifies a prefix of the

input program text as a lexeme matching one of the

token classes

• Can use tools for automatic code generation (e.g. Lex / Flex
/ ANTLR)

– How do these tools convert regexps to code? Finite Automata

• OR write scanner code manually

23

24

Scanner - flowchart

Lexical specification Regular expressions NFA

DFAReduced DFAImplementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

24

Quiz_13_1 Discussion (Regular

Expressions)
1. (P+o+n+g+a+l+L+h+r+i+M+k+S+n+t+U+y+h+B+u)* matches PPongalL... as

well

2. ~=m, gm – match operator context sensitive, (?i) – case insensitive

(langauge specific) /(?i)(Sankranti|Pongal|Onam|Magh\sBihu)/gm

3. (nuakhai + nabanna + wangala + lohri)^+

4. ((P*o*n*g*a*l}) + (B*i*h*u) + (L*o*h*r*i) + M*a*k*a*r*s*a*n*k*r*a*n*t*i))*(epsilon)
epsilon can be omitted

5. [A-Za-z]+ and ^[a-zA-Z]+$ and ([A-Za-z])*([]?)([A-Za-z])*and ([A-Za-
z]+)([]?)([A-Za-z]+) and [a*-z*A*-Z*]* match non-English strings

6. /(pongal|((makar)? sankranti|magh bihu|maghara valaku)+/

7. ^(Pongal|Bihu|Pushkar|Diwali)$

8. ((P|p)(O|o)(N|n)(G|g)(A|a)(L|l))

9. ([Ll][Oo][Hh][Rr][Ii]|[Pp][Oo][Nn][Gg][Aa][Ll])

10.(“Uttarayan”|”Lohri”) don’t really need “ ”

11.(Onam|onam|Dasara|dasara|Dussehra) can avoid a lot of typing.

25

25

26

Finite Automata

• Another way to describe sets of strings (just like

regular expressions)

• Also known as finite state machines / automata

• Reads a string, either recognizes it or not

• Two Features:

– State: initial, matching / final / accepting, non-matching

– Transition: a move from one state to another

26

27

Finite Automata

• Regular expressions and FA are equivalent*

* Ignoring the empty regular language

a

ba

initial state
state matching state

Exercise: what is the equivalent regular expression for this FA?

a

ba

initial state
state matching state

27

28

Think of this as an arrow to a state without a label

28

29

Non-deterministic Finite Automata

• A FA is non-deterministic if, from one state reading a single

character could result in transition to multiple states (or has

λ transitions)

• Sometimes regular expressions and NFAs have a close

correspondence

aba b

a(bb)+a

≡

29

30
What about A? (? as in optional)

30

31

Non-deterministic Finite Automata

• NFAs are concise but slow

• Example:

– Running the NFA for input string abbb requires exploring all

execution paths

* picture example taken from https://swtch.com/~rsc/regexp/regexp1.html

31

32

32

33

Non-deterministic Finite Automata

• NFAs are concise but slow

• Example:

– Running the NFA for input string abbb requires exploring all

execution paths

– Optimization: run through the execution paths in parallel

• Complicated. Can we do better?

* picture example taken from https://swtch.com/~rsc/regexp/regexp1.html

33

34

Deterministic Finite Automata

• Each possible input character read leads to at most one

new state

Slide courtesy: Milind Kulkarni

34

35

35

36

36

37

37

38

Implementation

• While doing lexical analysis, we need extensions to regular

expressions

– Match as long a substring as possible

– Handle errors

• Good algorithms for substring matching

– Require only a single pass over the input

• Using Tries

– Few operations per character

• Table look-up method

38

39

Implementation: Transition Tables

• A table encodes states and transitions of FA

– 1 row per state

– 1 column per character in the alphabet

– Table entry: state (label) a b

c b

c

State /

Character

a b c

1 1 3 2

2 - 3 -

3 - - 3

1 2 3

39

40

Example

NFA OR DFA?

40

41

Example: NFA -> DFA

State / Char a b c

1 2 - 3

41

42

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

42

43

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

43

44

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

44

45

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

45

46

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

46

47

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

47

48

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

48

49

Example: NFA -> DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

49

50

Example: DFA

a

c

a

1 2 3

c

3,4

b

5

c

6,7

4
a

b

a b

c

b, c

6

7

a

b

b, c

b, c

50

51

Example 2: NFA -> DFA

0

1

0

A B C

0

NFA OR DFA?

51

52

Example 2: NFA -> DFA

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, we have a choice to

go to either state A or B

0

1

0

A B C

0

52

53

Example 2: NFA -> DFA

0

1

0

A B C

0

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, FA gives us a choice

to go to either state A or state B

A,B {A,B,C} A No In state A,B we have two component states A and

B. From A on input 0, FA takes us to states A and B.

From B on 0 FA takes us to C. So, the set of states

reachable from A,B on input 0 is A,B,C. Similarly,

for input 1, from A FA takes us to A. From B on

input 1, FA gets stuck in an error state.

53

54

Example 2: NFA -> DFA

0

1

0

A B C

0

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, FA gives us a choice

to go to either state A or state B

A,B {A,B,C} A No In state A,B we have two component states A and

B. From A on input 0, FA takes us to states A and B.

From B on 0 FA takes us to C. So, the set of states

reachable from A,B on input 0 is A,B,C. Similarly,

for input 1, from A FA takes us to A. From B on

input 1, FA gets stuck in an error state.

A,B,C {A,B,C} A Yes One of the component states C is final in the FA.

Hence, A,B,C is a final state.

54

55

Example 2: NFA -> DFA

0

1

0

A B C

0

State/

char

0 1 Final ? Comments

A {A, B} A No In state A, on seeing input 0, FA gives us a choice

to go to either state A or state B

A,B {A,B,C} A No In state A,B we have two component states A and

B. From A on input 0, FA takes us to states A and B.

From B on 0 FA takes us to C. So, the set of states

reachable from A,B on input 0 is A,B,C. Similarly,

for input 1, from A FA takes us to A. From B on

input 1, FA gets stuck in an error state.

A,B,C {A,B,C} A Yes One of the component states C is final in the FA.

Hence, A,B,C is a final state.

Should we consider states B and C in the table?

55

56

Example 2: DFA

0

1

0

A A,B A,B,C

1

1

0

56

57

Example: DFA

a

c

a

1 2 3

c

3,4

b

5

c

6,7

4
a

b

a b

c

b, c

6

7

a

b

b, c

b, c

What states can be merged?

57

58

Example: Reduced DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

What states can be merged?

58

59

Example: Reduced DFA

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6 6

6 - 7 7

What states can be merged?

Definition 8 pic source: https://people.eecs.berkeley.edu/~luca/cs172/notemindfa.pdf

59

60

Example: Reduced DFA

What states can be merged?

6 and 7

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 6_7_M 5 -

6,7 - 6,7 6,7

6_7_M - 6_7_M 6_7_M

60

61

Example: Reduced DFA

What states can be merged?

6,7 and 6_7_M

State / Char a b c

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7_6_7_M 4 -

3,4 6,7_6_7_M 3,4 5

5 6,7_6_7_M 5 -

6,7_6_7_M - 6,7_6_7_

M

6,7_6_7_M

61

62

Example: Reduced DFA

What states can be merged?

4 and 5

State / Char a b c

1 2 - 3

2 3 - 4_5_M

3 - 3,4 4_5_M

4_5_M 6,7_6_7_M 4_5_M -

3,4 6,7_6_7_M 3,4 4_5_M

6,7_6_7_M - 6,7_6_7_M 6,7_6_7_M

62

63

Example: Reduced DFA

a

c

a

1 2 3

c

3,4

b

c
6,7_6_7_M

4,5_Ma

b

a b

c

b, c

63

64

Exercise

• Reduce the DFA

64

65

DFA Reduction (split-node)

• Algorithm

– Start with all final states in one node and all non-final in another

node. Call Split()

void Split(set_of_states* ss) {
do {

• Let S be any merged state corresponding to {s1, …, sn} and
Let ‘c’ be any alphabet

• Let t1, …, tn be the successor states to {s1, …, sn} under
‘c’

• If (t1, …, tn do not all belong to the same merged state) {
Split S into new states such that si and sj remain in the
same merged state if and only if ti and tj are in the same
merged state

} while(more splits are possible)
}

65

66

DFA Reduction (split-node)

• Start with two big nodes

– All final states in one and all

non-final in another

4,7
1,2,3

,5,6

66

67

DFA Reduction (split-node)

• Split 3,6 from 1,2, 3, 5, 6

– 3,6 have common successor

under ‘c’. 1,2,5 have no

successor under ‘c’

4,73,61,2,5

67

68

DFA Reduction (split-node)

• Split 1 from 1,2, 5

– 2 and 5 go to merged state 3,6

under ‘b’. 1 does not.

4,73,62,51

68

69

DFA Reduction (split-node)

• No more splits possible

4,73,62,51

a, d b c

69

70

DFA Program

Slide courtesy: Milind Kulkarni

70

71

Slide courtesy: Milind Kulkarni

71

72

Handling Lookahead

• E.g. distinguish between int a and inta

– If the next char belongs to current token, continue

– Else next char becomes part of next token

• Multi-character lookahead?

– E.g. DO I = 1, 100 (loop) vs. DO I = 1.100 (variable

assignment)

– Solutions: Backup or insert special “action” state

72

73

Handling Lookahead

• E.g. distinguish between int a and inta

– If the next char belongs to current token, continue

– Else next char becomes part of next token

• Multi-character lookahead?

– E.g. DO I = 1, 100 (loop) vs. DO I = 1.100 (variable

assignment)

– Solutions: Backup or insert special “action” state

123..44

73

74

Slide courtesy: Milind Kulkarni

74

75

Slide courtesy: Milind Kulkarni

75

Discussion

• Why separate class (token type) for each

keyword?

– Efficiency

• Parsers take decisions based on token types.

When decision making not possible, switch to

token values, which are strings. String comparison

is more expensive

– Compatibility with parser generators

• Some parser generators don’t support semantic

predicates

– Autocomplete / Intellisense 76

76

Discussion - Efficiency

77

switch(curToken.type) {
case IF: parse_if_stmt();

break;
..

}

switch(curToken.type) {
case KEYWORD: if(curToken.value==“if”);

parse_if_stmt();
..

}

77

Discussion - Compatibility

78

statement : if condition body (else body)? fi
if: {current_token.value == "if"} KEYWORD ;
else: {current_token.value == "else"} KEYWORD ;
fi: …
KEYWORD: IF | ELSE | FI

statement : IF condition body (ELSE body)? FI

78

79

Next time

Slide courtesy: Milind Kulkarni

79

80

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 3 (Sections: 3.1, 3,3, 3.6 to 3.9)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 3 (Sections 3.1 to 3.4, 3.6, 3.7)

Suggested Reading

80

