CS406:Compilers

Spring 2021

Week 14: Dataflow Analysis (Recap.) and
Higher-level Loop Optimizations

Recap: Liveness

* Variables are live if some path
leading to its use exists

e Start from exit block and
proceed backwards against the

control flow
LiveOut(b) = Ui esucc) Liveln(i)
LiveIn(b) = LivAe'lAJse(b) U (LiveOut(b) - Dei(b))
gen(b) kill(b)
//set that contailns all variables //set that contains all

used by block b variables defined by block b

Recap: Reaching Definitions

* Goal: to know where in a program each
variable x may have been defined when
control reaches block b

* Definition d reaches block b if there is a
path from point immediately following d
to b, such that the variable defined in d is
not redefined / killed along that path

In(b) =U; ePred(b) Out(i)

Out(b) = gen(b) U (In(b) - kill(b))

//set that contains all statements //set that contains all statements
that may define some variable x in that define a variable x that is

b also defined in b
gen(1l:a=3;2:a=4)={2} kill(1:a=3; 2:a=4)={1,2} 3

Recap: Dataflow Analysis

* Any-path problem

— The previous two analysis (liveness and reaching
definitions) determine if some property holds true
along some path (no guarantees)

 avariable is used/live along some path starting from its
definition (use-def chain)

* a definition reaches a block b along some path (without
intervening redefinition of the variable involved along that path)
(def-use chain)

Recap: Dataflow Analysis

 Forward-flow vs. Backward-flow

— The previous two analysis (liveness and reaching
definitions) determine the properties by computing IN and
OUT sets backward and forward to the control flow resp.

Recap: Dataflow Analysis

* Applications of RD (reaching definitions)
By building def-use chains:

— RD helps us to analyze if a variable is defined in the
program before it is used (think: “uninitialized variable”
warnings)

— RD helps us know what all definitions of x” reaching a
block b. This can enable constant folding if all those
definitions assign the same constant to x

Recap: Dataflow Analysis

* Applications of Liveness analysis
By building use-def chains:
— “Undefined variable” warnings
— Register allocation

Recap: Available Expressions

* Expression “x+y” is available at block b if
every path from entry node to b computes

“x+y” (and x and y are not assigned to/ —
defined after initial computation of “x+y”

In(b) =N; ePred(b) Out(i) Y

—

Out(b) = gen(b) U (In(b) - kill(b))

//set that contains expressions //set that contains expressions
generated by b. killed by b

//initialization: out(entry)={}, out(all b except entry block) = U,
the set of all expressions in the program ’

Recap: Dataflow Analysis

 RD vs. Available Expressions
— Meet operator: Union vs. Intersection

— Expression is available at the beginning of a block only if it
is available at the end of all the predecessor blocks

VS.

— A definition reaches the beginning of a block whenever it
reaches the end of any one or more of its predecessors

Recap: Dataflow Analysis

e All-path, Forward-flow problem

— The previous analysis (Available expressions)
determines if some property holds true along all
paths (guarantees exist)

* Whether an expression is computed along all paths

What is an all-path backward-flow problem?

Summary: Dataflow Analysis

Any-path All-path
Forward-flow Reaching Available
Definitions Expressions

Backward-flow |Liveness Analysis |Very-busy
expressions®

*also called anticipated expressions.
* Avoid recomputing and save space

* Can be used to identify candidates in loop-invariant code motion
(see: slide 65, week 12)

Recap: Optimize Loops

® [ow level optimization
® Moving code around in a single loop

® Examples: loop invariant code motion, strength
reduction, loop unrolling

® High level optimization
® Restructuring loops, often affects multiple loops

® Examples: loop fusion, loop interchange, loop tiling

12

High level loop optimizations

® Many useful compiler optimizations require restructuring
loops or sets of loops

® Combining two loops together (loop fusion)
® Switching the order of a nested loop (loop interchange)

® Completely changing the traversal order of a loop (loop
tiling)

® These sorts of high level loop optimizations usually take
place at the AST level (where loop structure is obvious)

13

Cache behavior

Most loop transformations target cache | | X
performance

® Attempt to increase spatial or temporal ‘

locality \

® Locality can be exploited when there is
reuse of data (for temporal locality) or
recent access of nearby data (for spatial

locality) y = Ax

Loops are a good opportunity for this: many
loops iterate through matrices or arrays

i

2>

Consider matrix-vector multiply example

: for (1 = 0; 1 < N; 1++)

e Multiple traversals of vector: : : :
opportunity for spatial and temporal for (3 =0; 3 <N; J++)
locality yl[il += A[1]03] * x[31]

® Regular access to array: opportunity for
spatial locality

14

Loop fusion

dol=1,n
cli] = a[i]
end do dol=1,n
dol=1,n ® Combine two loops c[i] = a[i]
b[i] = afi] together into a single b[i] = afi]
end do loop end do
T | o[1in] ® Why is this useful? | o[t
= - | alt:n] ® |s this always legal? — | aim
= | b1l
ettt | b[1:n]
Me—r—t—r— | a[1:n]

15

Loop interchange

Change the order of a nested
loop

This is not always legal — it
changes the order that
elements are accessed! ;

Why is this useful?
A

® C(Consider matrix-matrix . . .
_ _ for (1 =0; 1 < N; 1++)
multiply when A is stored fFor (5 = 05 3 < N; +4)
- b b}

in column-major order : N .
1] += A[1 * X
(i.e., each column is stored yLil L1103 3]

in contiguous memory)

< LLITITT]

16

Loop interchange

Change the order of a nested
loop

J
This is not always legal — it LB LLTX
changes the order that
elements are accessed! i

Why is this useful? -

y A

° CO:‘EITer Tatr:(jma;crlxd for (3 = 03 § < Ni +4)
MUTHPLY When A 1S Store for (1 =0; 1 < N; 1++)
in column-major grder y[i] += A[i1[31 * x[3]
(i.e., each column is stored
in contiguous memory)

17

Loop tiling

for (1 = 0; 1 < N; 1++)

Also called “loop blocking™ For (3 = @; 3 < N; j++)
Y s AFITET % X[
One of the more complex yLil += ALUILID ™ X3l
loop transformations
Goal:break loop up into for (11 = @; 11 < N; 11 += B)
smaller pieces to get spatial for (33 = @; 33 <N; 33 += B)
and temporal locality for (1 =115 1 < 11485 1+4)
for (3 =33; J < J3+B; J++)

® Create new inner loops y[il += A[LJ[3] * x[3]

so that data accessed in e

inner loops fit in cache | | X
Also changes iteration |

order, so may not be legal i

< LTIl T]
>

18

Loop tiling

for (1 =0; 1 < N; 1++)
for (j = 0; J < N; j++)
y[i] += A[11[3]1 * x[3]

Also called “loop blocking”

One of the more complex
loop transformations

Goal:break loop up into for (11 =0; 11 < N; 11 += B)
smaller pieces to get spatial o7 (3] =05 33 < N; 37 += B)

and temporal locality FO;OEiC; 3]]1 ; ll;JBJrBH;L)

e Create new inner loops y[1]l += A[1]1[3] * x[3]
so that data accessed in ;
inner loops fit in cache [TTO11X

Also changes iteration
order; so may not be legal :

n e

< L]
>

19

factor faster than -O2

In a real (Itanium) compiler

GFLOPS relative to -0O2; bigger is better

30.0 92% of Peak
Performance
29 5 _‘-4
15.0
7.5
OO — : | — | : | — | : :
N v 0 @ Q& 0 D
O O 5 &(\q 8 RS
< & & Y
x & > F

Loop transformations

Loop transformations can have dramatic effects on performance
Doing this legally and automatically is very difficult!

Researchers have developed techniques to determine legality of loop
transformations and automatically transform the loop

® Techniques like unimodular transform framework and polyhedral
framework

® These approaches will get covered in more detail in advanced
compilers course

21

Dependence Analysis

(separate set of slides posted)

