
CS406:Compilers
Spring 2021

Week 14: Dataflow Analysis (Recap.) and 
Higher-level Loop Optimizations

1



Recap: Liveness

• Variables are live if some path 
leading to its use exists

• Start from exit block and 
proceed backwards against the 
control flow

A := 1
A = B

B := 1 C := 1

D := A+B

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

gen(b) kill(b)
//set that contains all variables 
used by block b 

//set that contains all 
variables defined by block b 

2

LiveOut(b) =ڂi ∈Succ(b) LiveIn(i)

entry

exit



Recap: Reaching Definitions

• Goal: to know where in a program each 
variable x may have been defined when 
control reaches block b

• Definition d reaches block b if there is a 
path from point immediately following d 
to b, such that the variable defined in d is 
not redefined / killed along that path

1: i=m-1
2: j=n
3: a=u1

Out(b) = gen(b) ڂ (In(b) – kill(b))

//set that contains all statements 
that may define some variable x in 
b 
gen(1:a=3;2:a=4)={2} 

//set that contains all statements 
that define a variable x that is 
also defined in b 
kill(1:a=3; 2:a=4)={1,2} 3

In(b) =ڂi ∈Pred(b)Out(i)

entry

4: i=i+1
5: j = j -1

7: i=u3

exit

6: i=u3



Recap: Dataflow Analysis

• Any-path problem

– The previous two analysis (liveness and reaching 
definitions) determine if some property holds true 
along some path (no guarantees)

• a variable is used/live along some path starting from its 
definition (use-def chain) 

• a definition reaches a block b along some path (without 

intervening redefinition of the variable involved along that path) 
(def-use chain) 

4



Recap: Dataflow Analysis

• Forward-flow vs. Backward-flow

– The previous two analysis (liveness and reaching 
definitions) determine the properties by computing IN and 
OUT sets backward and forward to the control flow resp. 

5



Recap: Dataflow Analysis

• Applications of RD (reaching definitions)

By building def-use chains: 

– RD helps us to analyze if a variable is defined in the 
program before it is used (think: “uninitialized variable” 
warnings)

– RD helps us know what all definitions of ‘x’ reaching a 
block b. This can enable constant folding if all those 
definitions assign the same constant to x

6



Recap: Dataflow Analysis

• Applications of Liveness analysis

By building use-def chains: 

– “Undefined variable” warnings

– Register allocation

7



Recap: Available Expressions

• Expression “x+y” is available at block b if 
every path from entry node to b computes 
“x+y” (and x and y are not assigned to/ 
defined after initial computation of “x+y”

t1=4*i

Out(b) = gen(b) ڂ (In(b) – kill(b))

//set that contains expressions 
generated by b.

//set that contains expressions 
killed by b

8

In(b) =ځi ∈Pred(b)Out(i)

entry

exit

i=..
t1=4*i

t2=4*i

//initialization: out(entry)={}, out(all b except entry block) = U, 
the set of all expressions in the program



Recap: Dataflow Analysis

• RD vs. Available Expressions

– Meet operator: Union vs. Intersection 

– Expression is available at the beginning of a block only if it 
is available at the end of all the predecessor blocks

vs.

– A definition reaches the beginning of a block whenever it 
reaches the end of any one or more of its predecessors

9



Recap: Dataflow Analysis

• All-path, Forward-flow problem

– The previous analysis (Available expressions) 
determines if some property holds true along all 
paths (guarantees exist)

• Whether an expression is computed along all paths

10

What is an all-path backward-flow problem?



Summary: Dataflow Analysis

Any-path All-path

Forward-flow Reaching 
Definitions

Available 
Expressions

Backward-flow Liveness Analysis Very-busy 
expressions*

11

*also called anticipated expressions. 
• Avoid recomputing and save space
• Can be used to identify candidates in loop-invariant code motion 

(see: slide 65, week 12)



Recap: Optimize Loops

12
Slide Courtesy: Milind Kulkarni



13
Slide Courtesy: Milind Kulkarni



14
Slide Courtesy: Milind Kulkarni



15
Slide Courtesy: Milind Kulkarni



16
Slide Courtesy: Milind Kulkarni



17
Slide Courtesy: Milind Kulkarni



18
Slide Courtesy: Milind Kulkarni



19
Slide Courtesy: Milind Kulkarni



20
Slide Courtesy: Milind Kulkarni



21
Slide Courtesy: Milind Kulkarni



Dependence Analysis
(separate set of slides posted)

22


