Dataflow Analysis

Week 13: More Dataflow Analysis (
Reachable Definitions, Constant
Propagation ...)



<

Example: Constant Propagation and Dead
Code Elimination

1 X =1 Xx—71
X + 2 ) Y =1 + 2 = Y =1+2
Y + A Z =Y + A / =Y + A

Constant Propagation Dead Code Elimination



Example: constant propagation

® Goal: determine when variables take on constant values
® Why? Can enable many optimizations

® Constant folding

X =1; X =1;
y = X + 2; y = 3;
1f (x > z) theny =5 i 1f (x > z) theny =5

VAR e Y

® (reate dead code

X =1; X =1;
Yy = X + 2; > y = 3; //dead code
1f (y > x) theny =5 1f (true) then y = 5 //simplify!

Y. e Y ..



Exercise — Constant Propagation

1.X :

2.Labell:

3.Y :
Lif
X
X
Y
X
Lif

O 00 N OO Ul pb

Z

v N X X W v X

10.X :
11.Label2:

12. Y :

2

+ 1

8 goto Label2

10 goto Labell

X + 2

Which lines using X could be
replaced with a constant
value? (apply only constant
propagation)



How can we find constants/’

® |deal: run program and see which variables are constant

® Problem: variables can be constant with some inputs, not
others — need an approach that works for all inputs!

® Problem: program can run forever (infinite loops?) —
need an approach that we know will finish

® |dea: run program symbolically

® Essentially, keep track of whether a variable is constant
or not constant (but nothing else)



Overview of algorithm

® Build control flow graph

® We'll use statement-level CFG (with merge nodes) for
this

® Perform symbolic evaluation
® Keep track of whether variables are constant or not

® Replace constant-valued variable uses with their values, try
to simplify expressions and control flow



Build CFG

X =1
X=l; y=X+2
y = X + 2,
if (y > x) then y = 5; @x?
e Y e




Symbolic evaluation

® |dea:replace each value with a
symbol

® constant (specify which), no

T
information, definitely not
constant /‘\\
® Can organize these possible 2101 2 .
values in a [attice \\\'//
L

® Set of possible values,
arranged from least
information to most
information



Symbolic evaluation

® FEvaluate expressions symbolically:
eval(e,Vin)

e |[f e evaluates to a constant,

return that value. If any input is
T (or L), return T (or 1) //‘\\

® Why?

® Two special operations on lattice \\'///

® meet(a, b) — highest value less
than or equal to bothaand b

Join often writtenasa LU b

o ini _ |
join(a, b) — lowest value greater Meet often written as a M b

than or equal to bothaand b



Putting it together

Yy

e Keep track of the symbolic value of T
a variable at every program point 1

(on every CFG edge) —

® State vector

® What should our initial value be?

® Starting state vector is all T

e (Can’t make any assumptions

about inputs — must assume |
NOt constant merge

iy
® Everything else starts as L, since :
we have no information about Y
1L

the variable at that point

end



Executing symbolically

® F[or each statement t = e evaluate
e using Vi, update value for t and
propagate state vector to next
statement

e What about switches?

® |[feis true or false, propagate Vin
to appropriate branch

® What if we can’t tell?

® Propagate Vi to both
branches, and symbolically
execute both sides

® What do we do at merges!?

end

y
TI|T
X =1
N
y=X+2
| 1L
Q%
1L
11l y =5
| /LJ_
merge
1L
.Y .
N




Handling merges

Have two differentVi,s coming from two
different paths

Goal: want new value for Vi, to be safe
(shouldn’t generate wrong information), and we
don’t know which path we actually took

Consider a single variable. Several situations:

® V=1 V=% Vg, =F*

e V,
® V,=constant X,V = constanty = Vo, = T

. VT Vast Ve //l\\
Generalization:

R \\|//

constant X,V2 = x = Vout = X



Result: worklist algorithm

® Associate state vector with each edge of CFG, initialize all
values to L, worklist has just start edge

® While worklist not empty, do:

Process the next edge from worklist
Symbolically evaluate target node of edge using input state vector

If target node 1s assignment (x = e), propagate Vin[eval(e)/x] to
output edge

If target node 1s branch (e?)

If eval(e) 1s true or false, propagate Vin to appropriate output
edge

Else, propagate Vin along both output edges
If target node 1s merge, propagate join(all Vin) to output edge
If any output edge state vector has changed, add i1t to worklist



Running example

T

X =1




Running example

T

X =1

T

y=X+12

13

1
195
5




What do we do about loops?

® Unless a loop never executes, symbolic execution looks like
it will keep going around to the same nodes over and over

again

® |[nsight: if the input state vector(s) for a node don’t change,
then its output doesn’t change

® |[f input stops changing, then we are done!

® Claim:input will eventually stop changing. Why?



Loop example

First time through loop, x = |
Subsequent times,x = T

X =X + 1




Complexity of algorithm

V = # of variables, E = # of edges

Height of lattice = 2 — each state vector can be updated at
most 2 *V times.

So each edge is processed at most 2 *V times, so we
process at most 2 * E *V elements in the worklist.

Cost to process a node: O(V)

Overall, algorithm takes O(EV?2) time



Question

® (Can we generalize this algorithm and use it for more
analyses?



Constant propagation

Step |: choose lattice (which values are you going to track
during symbolic execution)?

® Use constant lattice

Step 2: choose direction of dataflow (if executing symbolically,
can run program backwards!)

® Run forward through program

Step 3: create transfer functions

® How does executing a statement change the symbolic state?
Step 4: choose confluence operator

® What do do at merges? For constant propagation, use join



