
CS406: Compilers
Spring 2021

Week 12: Control Flow Graphs, Data Flow
Analysis

1

Basic Blocks and Flow Graphs

• Basic Block
• Maximal sequence of consecutive instructions with the

following properties:
• The first instruction of the basic block is the only entry point

• The last instruction of the basic block is either the halt
instruction or the only exit point

• Flow Graph
• Nodes are the basic blocks

• Directed edge indicates which block follows which block

2

Basic Blocks and Flow Graphs - Example

3

if A = B then
C := 1;
D := 2;

else
E := 3

fi
A := 1;

A = B?

C := 1;
D := 2;

E := 3;

A := 1

A data flow graph

True FALSE

Flow Graphs

• Capture how control transfers between basic blocks
due to:
• Conditional constructs

• Loops

• Are necessary when we want optimize considering
larger parts of the program
• Multiple procedures

• Whole program

4

Flow Graphs - Representation

• We need to label and track statements that are
jump targets
• Explicit targets – targets mentioned in jump statement

• Implicit targets – targets that follow conditional jump
statement
• Statement that is executed if the branch is not taken

• Implementation
• Linked lists for BBs

• Graph data structures for flow graphs

5

6
Slide Courtesy: Milind Kulkarni

7
Slide Courtesy: Milind Kulkarni

8
Slide Courtesy: Milind Kulkarni

9
Slide Courtesy: Milind Kulkarni

10
Slide Courtesy: Milind Kulkarni

11
Slide Courtesy: Milind Kulkarni

12

{1}

13

{1}

14

{1,3}

15

{1,3}

16

{1,3,5}

17

{1,3,5}

18

{1,3,5,7}

19

{1,3,5,7}

20

{1,3,5,7}

21

{1,3,5,7,10}

22

{1,3,5,7,10,11}

23

{1,3,5,7,10,11} Block(1) = ?

24

{1,3,5,7,10,11} Block(1) = ?
Start from statement 2 and add
till either the end or a leader is
reached

25

{1,3,5,7,10,11} Block(1) = {1,2}

26

{1,3,5,7,10,11} Block(3) = ?

27

{1,3,5,7,10,11} Block(3) = {3,4}

28

{1,3,5,7,10,11} Block(5) = ?

29

{1,3,5,7,10,11} Block(5) = {5,6}

30

{1,3,5,7,10,11} Block(7) = ?

31

{1,3,5,7,10,11} Block(7) = {7,8,9}

32

{1,3,5,7,10,11} Block(10) = ?

33

{1,3,5,7,10,11} Block(10) = {10}

34

{1,3,5,7,10,11} Block(11) = {11}

35
Slide Courtesy: Milind Kulkarni

36

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

37

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 1 to block 2

38

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 4

39

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 3

40

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 3 to block 4

41

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 6

42

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 5

43

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 5 to block 2

44

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

45
Slide Courtesy: Milind Kulkarni

46
Slide Courtesy: Milind Kulkarni

Control Flow Graphs - Use

• Why do we need CFGs? - Global Optimization
• Optimizing compilers do global optimization (i.e.

optimize beyond basic blocks)
• Differentiating aspect of normal and optimizing compilers

• E.g. loops are the most frequent targets of global
optimization (because they are often the “hot-spots”
during program execution)

how do we identify loops in CFGs?

47

Identify Loops in CFGs

• Loops – how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1) There is a loop entry node such that any path from the
graph entry node to any node in L goes through the
loop entry node. i.e. no node in L has a predecessor
that is outside L.

2) Every node in L has a non-empty path, completely
within L, to the entry of L.

48

49

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

50

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

NO. Why?

Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

• There is a loop entry node such that any path from the graph
entry node to any node in L goes through the loop entry node.
i.e. no node in L has a predecessor that is outside L.

51

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B4 has a predecessor B3 not in L

Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

• Every node in L has a non-empty path, completely within
L, to the entry of L.

52

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B2 has a path B2->B3->B4->B5->B2
, where B3 is not in L

Identify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.

53

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

Optimize Loops

• Example - Code Motion

Should be careful while doing optimization of
loops

54

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop.

55

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

56

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

• What if I != 0 but loop executes zero times?

57

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

Optimization Criteria - Safety and
Profitability

• Safety - is the code produced after optimization
producing same result?

• Profitability - is the code produced after optimization
running faster or uses less memory or triggers lesser
number of page faults etc.

58

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

• E.g. moving I out of the loop
introduces exception (when I=0)

• E.g. if the loop is executed zero
times, moving I out is not
profitable

Optimize Loops -Identifying Invariant
Expressions

• How do we identify expressions that can be
moved out of the loop?
• LoopDef = {} set of variables defined i.e. whose

values are overwritten) in the loop body

• LoopUse = { } ‘relevant’ variables used in
computing an expression

59

Mark_Invariants(Loop L) {
1. Compute LoopDef for L
2. Mark as invariant all expressions,

whose relevant variables don’t belong
to LoopDef

}

Optimize Loops -Identifying Invariant
Expressions

• Example

60

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopDef{}

{A, K}
{A, J, K}

{A, J, K}

Optimize Loops -Identifying Invariant
Expressions

• Example

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =

Addr(A)+(I*10000)-10000+(J*100)-100+K-1

61

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant
Expressions

{ I*J,
Addr(A[i][j]) }

*Assuming row-major ordering of storage

Optimize Loops -Identifying Invariant
Expressions

• Example

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =

Addr(A)+(I*10000)-10000+(J*100)-100+K-1

62

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant
Expressions

{ Addr(A[i]) }

*Assuming row-major ordering of storage

Optimize Loops -Factoring Invariant
Expressions

• Move the invariant expressions identified

63

Factor_Invariants(Loop L) {
Mark_Invariants(L);
foreach expression E marked an invariant:

1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=E in L’s header code

immediately after the first loop-
termination test (i.e. after “j<!op> OUT” in slide 39,
week9.pdf)
// If loop is known to execute at least once,
insert T:=E before LOOP:

}

Optimize Loops -Factoring Invariant
Expressions

• Example

64

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

Case I: We can move t = a op b if the statement
dominates all loop exits where t is live

A node a dominates node b if all paths to b must go
through a

65

for (...) {
if(*)

a = 100
}
c=a

Cannot move a=100 because it does not dominate
c=a i.e. there is one path (when if condition is false)
c=a can be reached without going a=100

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

Case II: We can move t = a op b if there is only
definition of t in the loop

66

for (...) {
if(*)

a = 100
else

a = 200
}

Multiple definition of a

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

Case III: We can move t = a op b if t is not
defined before the loop, where the definition
reaches t’s use after the loop

67

a=5
for (...) {

a = 4+b
}
c=a

Definition of a in a=5 reaches c=a, which is
defined after the loop

Optimize Loops –Strength Reduction

• Like strength reduction in peephole optimization
• E.g. replace a*2 with a<<1

• Applies to uses of induction variable in loops
• Basic induction variable (I) – only definition within

the loop is of the form I = I ± S, (S is loop
invariant)

I usually determines number of iterations

• Mutual induction variable (J) – defined within the
loop, its value is linear function of other induction
variable, I, such that

J = I * C ± D (C, D are loop invariants)

68

Optimize Loops –Strength Reduction

69

strength_reduce(Loop L) {
Mark_Invariants(L);
foreach expression E of the form I*C+D where I is

L’s loop index and C and D are loop invariants
1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=Io*C+D, where Io is the initial value of the

induction variable, immediately before L
4. Insert T:=T+S*C, where S is the step size, at the end of

L’s body
}

Optimize Loops –Strength Reduction

• Suppose induction variable I takes on values Io,
Io+S, Io+2S, Io+3S... in iterations 1, 2, 3,
4, and so on…

• Then, in consecutive iterations, Expression
I*C+D takes on values

• The expression changes by a constant S*C

• Therefore, we have replaced a * and + with a +

70

Io*C+D
(Io+S)*C+D = Io*C+S*C+D
(Io+2S)*C+D = Io*C+2S*C+D
... ...

Optimize Loops – Strength Reduction

• Example (Applying to innermost loop)

71

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K
. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

//S=1
//C=temp2

Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

72

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K

. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

// Induction var = J
// S = 1
// Expression = I * J

Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

73

...
. . .
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I

...

Optimize Loops – Strength Reduction

• Further strength reduction possible?

74

for I=1 to 100
temp3=Addr(A[i])
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I

Optimize Loops – Loop Unrolling

75
Slide Courtesy: Milind Kulkarni

Optimize Loops - Summary

76
Slide Courtesy: Milind Kulkarni

Slide Courtesy: Milind Kulkarni

Slide Courtesy: Milind Kulkarni

Liveness – Recap..

1: X = 10
…….

N: Y = X + 5

X used here

X defined here

• A variable X is live at statement S if:
• There is a statement S’ that uses X

• There is a path from S to S’

• There are no intervening definitions of X

X is live at 1

..used in future

79

Liveness – Recap..

1: X = 10
2: X = Y + 2

….
N: Y = X + 5

• A variable X is dead at statement S if it is not live at S
• What about …; X = X + 1?

X is dead at 1

80

Liveness in a CFG

X = e

…

…

Given that e does not use
X,X is definitely dead here
(i.e. before the statement).

81

• Define a set LiveIn(b), where b is a basic
block, as: the set of all variables live at the
entrance of a basic block

Liveness in a CFG

X = ...

…

…

X is defined here

82

• Define a set Def(b), where b is a basic block,
as: the set of all variables that are defined within
block b

Liveness in a CFG

X = e

…

…

If X is live here (i.e. after the
statement), X is used in some
successor

… …

83

• Define a set LiveOut(b), where b is a basic
block, as: the set of all variables live at the exit of
a basic block

Liveness in a CFG

X = e

…

…

If X is live here (i.e. after the
statement), X is used in some
successor

… …

84

• If S(b) is the set of all successors of b, then

LiveOut(b) =ڂi ∈S(b) LiveIn(i)

Liveness in a CFG

.. = X

…

…

X must be live here (i.e.
before the statement)

85

• Define a set LiveUse(b), where b is a basic
block, as: the set of all variables that are used
within block b. LiveIn(b) ⊇ LiveUse(b)

Liveness in a CFG - Observation

.. = Y

…

…

86

•If a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

X not live here / X is live here

If X is not live here / X is live here

Liveness in a CFG

87

• If a variable is live on exit from b, it is either
defined in b or live on entrance to b

•Under what scenarios can a variable be live at
the entrance of a basic block?

LiveIn(b)⊇ LiveOut(b) – Def(b)

Liveness in a CFG

88

• If a variable is live on exit from b, it is either
defined in b or live on entrance to b

•Under what scenarios can a variable be live at
the entrance of a basic block?

•Either the variable is used in the basic block

LiveIn(b)⊇ LiveOut(b) – Def(b)

Liveness in a CFG

89

• If a variable is live on exit from b, it is either
defined in b or live on entrance to b

•Under what scenarios can a variable be live at
the entrance of a basic block?

•Either the variable is used in the basic block
•OR the variable is live at exit and not defined within
the block

LiveIn(b)⊇ LiveOut(b) – Def(b)

Liveness in a CFG

90

•Under what scenarios can a variable be live at
the entrance of a basic block?

•Either the variable is used in the basic block
•OR the variable is live at exit and not defined within
the block

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) –
Def(b))

Liveness in a CFG - Example

91

• Draw CFG for the code:

A:=1
if A=B then

B:=1
else

C:=1
endif
D:=A+B

A := 1
A = B

B := 1 C := 1

D := A+B

Liveness in a CFG - Example

92

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1

b2

b3

b4

Liveness in a CFG - Example

93

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2

b3

b4

Liveness in a CFG - Example

94

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3

b4

Liveness in a CFG - Example

95

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4

Liveness in a CFG - Example

96

• Compute Def(b) and LiveUse(b) sets

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

Liveness in a CFG - Example

97

• start from use of a variable to its definition.
Is this analysis going backward or forward w.r.t. control flow?

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

Liveness in a CFG - Example

98

• start from use of a variable to its definition.
Backward-flow problem

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

Liveness in a CFG - Example

99

• Start from use of a variable to its definition.
•Compute:

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

Liveness in a CFG - Example

100

• Start from use of a variable to its definition.
•Compute:

Block Def LiveUse

b1 {A} {B}

b2 {B} {}

b3 {C} {}

b4 {D} {A,B}

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

Block LiveIn LiveOut

b1 {B} {A,B}

b2 {A} {A,B}

b3 {A,B} {A,B}

b4 {A,B} {}

Liveness in a CFG - Example

101

• Assume that the CFG below represents your entire program
•What can you infer from the table?

Block LiveIn LiveOut

b1 {B} {A,B}

b2 {A} {A,B}

b3 {A,B} {A,B}

b4 {A,B} {}

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

Liveness in a CFG - Example

102

• Assume that the CFG below represents your entire program
•Variable B is live in b1, the entry basic block of CFG. This
implies that B is used before it is defined. An error!

Block LiveIn LiveOut

b1 {B} {A,B}

b2 {A} {A,B}

b3 {A,B} {A,B}

b4 {A,B} {}

A := 1
A = B

B := 1 C := 1

D := A+B

b1

b2 b3

b4

