CS406: Compilers

Spring 2021

Week 12: Control Flow Graphs, Data Flow
Analysis

Basic Blocks and Flow Graphs

e Basic Block

* Maximal sequence of consecutive instructions with the
following properties:

* The first instruction of the basic block is the only entry point

 The last instruction of the basic block is either the halt
instruction or the only exit point

* Flow Graph
* Nodes are the basic blocks
* Directed edge indicates which block follows which block

Basic Blocks and Flow Graphs - Example

if A = B then
C :=1; True FALSE
D := 2; .

else
E := 3

fi

A :=1;

A data flow graph

Flow Graphs

e Capture how control transfers between basic blocks
due to:
* Conditional constructs
* Loops
* Are necessary when we want optimize considering
larger parts of the program

* Multiple procedures
* Whole program

Flow Graphs - Representation

* We need to label and track statements that are
jump targets
* Explicit targets — targets mentioned in jump statement

* Implicit targets — targets that follow conditional jump
statement

* Statement that is executed if the branch is not taken
* Implementation

* Linked lists for BBs
* Graph data structures for flow graphs

Running example

A =4
tl = A *B
repeat {
t2 = t1/C
1f (t2 2 W) {
M=tl * k
t3 =M+ 1
¥
H=1
M=1t3 - H
} until (T3 > @)

Running example

PO Woo~NO U wWNEBRE
*
H A

el

CFG for running example

A=4
tl=A*B
L1: 2 = tl/c

1f t2 < W goto L2

goto L1

M=1t3 - H

1f t3 = 0 goto L3

L2: halt

How do we build
this automatically?

Constructing a CFG

® To construct a CFG where each node is a basic block
® |dentify leaders: first statement of a basic block

® |n program order, construct a block by appending
subsequent statements up to, but not including, the next
leader

® |dentifying leaders
® First statement in the program
® Explicit target of any conditional or unconditional branch

® |mplicit target of any branch

Partitioning algorithm

Input: set of statements, stat(i) = ith statement in input

Output: set of leaders, set of basic blocks where block(x) is
the set of statements in the block with leader x

Algorithm
leaders = {1} /[Leaders always includes first statement
fori=1 to |n| /[|n] = number of statements

if stat(i) is a branch, then
leaders = leaders v all potential targets
end for
worklist = leaders
while worklist not empty do
X = remove earliest statement in worklist
block(x) = {x}
for (i=x + [;i < |n| and i & leaders; i++)
block(x) = block(x) u {i}
end for

end while
10

Running example

O oo~ U b MNP

o
S

Leaders =
Basic blocks =

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

11

Leaders = {1}

Basic blocks =

Running example

A=4

O 00 ~N O U1l WN|F

o
o

—
=

—
™NJ

L3:

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

12

Running example

A=4

tl = A *B

O 00N O UT p WIN (-

o
o

Leaders = {1}
Basic blocks =

L1:

L2

L3:

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

13

Running example

A=4
t1 = A * B

L1:

t2 =1tl / C

O 00 ~NO VT pIWIN

o
o

Leaders = {1, 3}

Basic blocks =

L2

L3:

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

14

Running example

L1:

A=4
t1 = A * B
t2 = t1 / C

1f t2 < W goto L2

O 00N O UVIlh([WN -

o
o

Leaders = {1, 3}

Basic blocks =

L2

L3:

M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

15

Running example

L1:

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2

M=1t1 * k

O 0o ~NOUVIH WN -

[
S

11

Leaders = {1,3,5}

Basic blocks =

L2

L3:

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

16

Running example

L1:

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

O 0o NO|UT B W N -

[
S

11

Leaders = {1,3,5}

Basic blocks =

L2

L3:

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

17

Running example

L1:

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

L2

H=1

O o(~No LT B W=

=
SN]

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

18

Running example

L1:

L2

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=1t3 - H

Olco(~N o U1 b WN =

=
SN]

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

1f t3 > @ goto L3
goto L1
halt

19

Running example

L1:

L2

A =14

tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1I

M =13 - H

Wico I OO LT B N =

1f t3 > @ goto L3

=
SN]

11 L3:

Leaders = {1,3,5,7}

Basic blocks =

goto L1
halt

20

Running example

RPIOO o ~NO U1 & WN =
+
w
|
=
+
—

=

Leaders = {1,3,5,7,10}

Basic blocks =

21

Running example

RS OO0 ~NO U1l & WN =
+
w
|
=
+
—

=

Leaders = {1,3,5,7,10,11}

Basic blocks =

22

Running example

RI©® OWoo N U WN B
+
w
|
=
+
—

=

Leaders = {1,3,5,7,10,11} BlOCk(l) = 7

Basic blocks =

Running example

A =14
tl1 = A *B

t2 =t1 / C

1f t2 < W goto L2

o
+
w

|
m

RS OO0 ~NO U1l & WN =

=

Leaders= {1,3,5,7,10,11} Block(1l) = ?

Basic blocks = Start from statement 2 and add
till either the end or a leader is
reached 24

Running example

>

=4

1=A%*B

t2 =t1 / C

1f t2 < W goto L2
= tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

f-|-

=<

RO ©oo~N U A WN -

=

Leaders= {1,3,5,7,10,11} Block(1l) = {1,2}

Basic blocks =

Leaders = {
Basic blocks =

Running example

A=4

M= t1 *
t3 =M+
H=1

1f t3
goto L1

tl1 = A *B
t2 =t1 / C
1f t2 < W goto L2

M=1t3 - H
> @ goto L3

RS OO0 ~NO U1l & WN =

=

halt

,3,5,7,10,11}

Block(3)

26

Running example

>

=4

1=A%*B

t2 =t1 / C

1f t2 < W goto L2
= tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

f-|-

=<

RO ©oo~N U A WN -

=

Leaders= { ,3,5,7,10,11} BlOCk(3) = {3,4}

Basic blocks =

Running example

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

RS OO0 ~NO U1l & WN =

=

Leaders= { , ,5,7,10,11} Block(5)

Basic blocks =

Running example

>

=4

1=A%*B

t2 =t1 / C

1f t2 < W goto L2
= tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

halt

f-|-

=<

RO ©oo~N U A WN -

=

Leaders= { , ,5,7,10,11} BlOCk(S) = {5,6}

Basic blocks =

Leaders =
Basic blocks =

Running example

=

RS OO0 ~NO U1l & WN =
+
w
|
=
+
—

J J J7)1@J11}

Block(7) = ?

30

Leaders =
Basic blocks =

Running example

=

RS OO0 ~NO U1l & WN =
+
w
|
=
+
—

J J J7)1@J11}

Block(7) = {7,8,9}

31

Leaders =
Basic blocks =

Running example

=

RS OO0 ~NO U1l & WN =
+
w
|
=
+
—

J J J)16}11}

Block(10) = ?

32

Running example

RI® W ~NO UTHWN
+
W
|
=
+
—

=

Leaders= { , , , ,10,11} Block(10) = {10}

Basic blocks =

33

Leaders =
Basic blocks =

J

Running example

A =4

tl = A *B

t2 =t1 / C

1f t2 < W goto L2
M=1tl * k

t3 =M+ 1

H=1

M=+t3 - H

1f t3 > @ goto L3
goto L1

RS OO0 ~NO U1l & WN =

=

halt

J

J

J

,11} Block(11)

111}

34

Running example

1f t3 > 0 goto L3
goto L1
halt

RSO oo N U WN P
+
w
|
=<
+
—

|

Leaders = {1,3,5,7,10, | I}
Basic blocks = {{l,2},{3,4},{5,6},{7,8,9} {10}, {I 1} }

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
x = last statement of block(i)
if stat(x) is a branch, then
for each explicit target y of stat(x)
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/

end for
36

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

| x = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 1 to block 2
create edge from block i to block y

end for

[if statix) | tional €] |
create edge from block i to block i+/

end for

37

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Output:The CFG N\ N
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
| for each explicit target y of stat(x) | Edge from block 2 to block 4
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/
end for

38

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Output:The CFG N\ = N
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 2 to block 3
create edge from block i to block y
end for
Lif stat(x) is not unconditional then |
create edge from block i to block i+/
end for

39

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Output:The CFG N\ @
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 3 to block 4
create edge from block i to block y
end for
Lif stat(x) is not unconditional then |
create edge from block i to block i+/
end for

40

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG /\ ﬂ Ny
for i = | to |block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
| x = last statement of block(i) |
if stat(x) is a branch, then
| for each explicit target y of stat(x) | Edge from block 4 to block 6
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/
end for

41

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

® OQutput:The CFG /\ ﬂ PN
fori=1to |b!'0r.'k| {{1) 2}: {3:4}: {SJ 6}) {718: 9?:?1@}: {11}}
Lx = last statement of block(i) |
if stat(x) is a branch, then
for each explicit target y of stat(x) Edge from block 4 to block 5
create edge from block i to block y
end for
Lif stat(x) is not unconditional then |
create edge from block i to block i+/
end for

42

Putting edges in CFG

® Thereis a directed edge from B to By if

® Thereis a branch from the last statement of B| to the first
statement (leader) of B

® B; immediately follows B in program order and B, does not end
with an unconditional branch

® |nput: block, a sequence of basic blocks

¢ Qutput:The CFG /\ ﬂ N

fori=Ito|block| {{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
| x = last statement of block(i) |

if stat(x) is a branch, then
| for each explicit target y of stat(x) | Edge from block 5 to block 2
create edge from block i to block y
end for
if stat(x) is not unconditional then
create edge from block i to block i+/
end for

43

Block(1)

Block(2)

Block(3)

Block(4)

Result

goto L1

Block(5)

44

Discussion

® Some times we will also consider the statement-level CFG,
where each node is a statement rather than a basic block

® FEither kind of graph is referred to as a CFG

® |n statement-level CFG, we often use a node to explicitly
represent merging of control

® Control merges when two different CFG nodes point to
the same node

® Note: if input language is structured, front-end can generate
basic block directly

e “GOTO considered harmful”

45

Statement level CFG

A=4
Y
tl—A*B
£2 = t1l/c

¥

1f t2 < W goto L2

goto L1

M=1tl * k
¥
t3 =M+ 1
¢
L2: H=1I
L]
M=+3 -H
¥
1f t3 = @ goto L3
¥
halt

46

Control Flow Graphs - Use

* Why do we need CFGs? - Global Optimization

* Optimizing compilers do global optimization (i.e.
optimize beyond basic blocks)
 Differentiating aspect of normal and optimizing compilers

* E.g. loops are the most frequent targets of global
optimization (because they are often the “hot-spots”
during program execution)

how do we identify loops in CFGs?

|dentify Loops in CFGs

* Loops — how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1) There is a loop entry node such that any path from the
graph entry node to any node in L goes through the

loop entry node. i.e. no node in L has a predecessor
that is outside L.

2) Every node in L has a non-empty path, completely
within L, to the entry of L.

ldentify Loops in CFGs

Block(1) ‘A =_4

t2 = t1l/c
Block(2) ‘iF £2 < W goto L2

goto L1 Block(5)

H
=t3 - H
f t3 > @0 goto L3

[L5: halt
Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

ldentify Loops in CFGs

t2 = tl/c
Block(2) ‘iF t2 < wm

goto L1 Block(5)

k

I

TR

Block(4) M = +3 - H
— @&j NO. Why?

[L5: halt
Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

|dentify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

* There is a loop entry node such that any path from the graph
entry node to any node in L goes through the loop entry node.
i.e. no node in L has a predecessor that is outside L.

B1 | *., < graph entry node

B2 | tzth\ﬁl\lOOp entry node

B3([::-"- looto 1t IBS B4 has a predecessor B3 not in L

H=1I
B4 M=+%3 =H

if t3 =z @ goto L3

B6 [| -

|dentify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

* Every node in L has a non-empty path, completely within
L, to the entry of L.

B1 | *., < graph entry node

B2 | tzzqhﬁl\lOOp entry node

M= t1 * k
SE1Y freco IBS B2 has a path B2->B3->B4->B5->B2
,Where B3 isnotinlL

H=1I
B4 [/ %5,

if t3 =z @ goto L3

B6 [| .

|dentify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.

Bl

B2

B3

B4

B6

a4 = 4
tl=4 * E

té = tlic
1f t2 < W goto LE

H=1
M=%3 - H
if t3 = @ goto L3

halt

~—— graph entry node

goto L1

loop entry node

B5

53

Optimize Loops

* Example - Code Motion

Should be careful while doing optimization of
loops

while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

Optimize Loops — Code Motion

e Should be careful while doing optimization of
loops
while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

* Optimization: can move 10/l out of loop.

Optimize Loops — Code Motion

e Should be careful while doing optimization of
loops
while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

* Optimization: can move 10/I out of loop
e What if | =0?

Optimize Loops — Code Motion

e Should be careful while doing optimization of
loops

while J > I loop
A(j) := 10/1,;
J =3+ 25
end loop;

* Optimization: can move 10/I out of loop
e What if | =0?
* What if | I= 0 but loop executes zero times?

Optimization Criteria - Safety and
Profitability

 Safety - is the code produced after optimization
producing same result?

* Profitability - is the code produced after optimization
running faster or uses less memory or triggers lesser
number of page faults etc.

while J > I loop * E.g. moving | out of the loop
A(j) := 10/1; introduces exception (when 1=0)
j =3 + 2; e E.g.if the loop is executed zero
end loop; times, moving | out is not

profitable

Optimize Loops -Identifying Invariant
Expressions

* How do we identify expressions that can be
moved out of the loop?

* LoopDef = {} setof variables defined i.e. whose
values are overwritten) in the loop body

 LoopUse = { } ‘relevant’ variables used in
computing an expression

Mark_Invariants(Loop L) {
1. Compute LoopDef for L
2. Mark as invariant all expressions,
whose relevant variables don’t belong
to LoopDef

Optimize Loops -Identifying Invariant
Expressions

* Example LoopDef{}

for I = 1 to 100 ~{A, 3, K}

for J = 1 to 100 ~{A, J, K}
for K = 1 to 100 - {A, K}

A[T][I]LK] = (I*J)*K

Optimize Loops -Identifying Invariant
Expressions

Invariant

* Example
Expressions

for I = 1 to 100
for J =1 to 100
for K = 1 to 100 —{ I*J,
A[I][I][K] = (I*3)*K Addr(A[i][3])

For an array access, A[m] => Addr(A) + m
For 3D array above™, Addr(A[I][J][K]) =
Addr (A)+(I*10000)-10000+(J1*100)-100+K-1

*Assuming row-major ordering of storage

Optimize Loops -Identifying Invariant
Expressions

« Example Invariant
Expressions
for I =1 to 100 { Addr(A[i]) }

for J =1 to 100 —
for K = 1 to 100
A[I][I][K] = (I*J)*K

For an array access, A[m] => Addr(A) + m
For 3D array above™, Addr(A[I][J][K]) =
Addr(A)+(I*10000)-10000+(J1*100)-100+K-1

*Assuming row-major ordering of storage

Optimize Loops -Factoring Invariant
Expressions

* Move the invariant expressions identified

Factor_Invariants(Loop L) {
Mark _Invariants(L);
foreach expression E marked an invariant:
1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=E 1in L’s header code
immediately after the first loop-

termination test (i.e. after “j<lop> OUT” in slide 39,
week9.pdf)

// If loop is known to execute at least once,
insert T:=E before LOOP:

Optimize Loops -Factoring Invariant
Expressions

* Example
for I=1 to 100
temp3=Addr(A[i])
for I = 1 to 100 for J=1 to 100
for J = 1 to 100) templ=Addr(temp3(3J))
for K = 1 to 100 temp2=I*]J
A[I][I][K] = (I*J)*K for K=1 to 100

templ[K]=temp2*K

Optimize Loops -Factoring Invariant
Expressions

* Expressions cannot always be moved out!

Casel: Wecanmovet = a op b ifthe statement
dominates all loop exits where t is live

A node a dominates node b if all paths to b must go

through a
for (...) {
if(*)
a = 100
}
c=a

Cannot move a=100 because it does not dominate
c=a i.e. there is one path (when if condition is false)
Cc=a canh be reached without going a=100

Optimize Loops -Factoring Invariant
Expressions

* Expressions cannot always be moved out!

Casell: Wecan movet = a op b ifthereisonly
definition of t in the loop

for (...) {
if(*)
a = 100
else
a = 200
}

Multiple definition of a

Optimize Loops -Factoring Invariant
Expressions

* Expressions cannot always be moved out!

Caselll: Wecanmovet = a op b iftisnot
defined before the loop, where the definition
reaches t’s use after the loop

a=>

for (...) {
a = 4+b

}

c=a

Definition of a in a=5 reaches c=a, whichis
defined after the loop

Optimize Loops —Strength Reduction

* Like strength reduction in peephole optimization
* E.g. replace a*2 with a<«<1

e Applies to uses of induction variable in loops

e Basic induction variable (I) — only definition within
the loopisoftheformI = I % S, (Sisloop
invariant)

I usually determines number of iterations

 Mutual induction variable (J) — defined within the
loop, its value is linear function of other induction
variable, I, such that

J=I*C=z%D (C, D are loop invariants)

Optimize Loops —Strength Reduction

strength_reduce(Loop L) {

Mark _Invariants(L);

foreach expression E of the form I*C+D where I is
L’s loop index and C and D are loop invariants

1.
2.
3.

Create a temporary T

Replace each occurrence of E in L with T
Insert T:=I_*C+D, where I istheinitial value of the
induction variable, immediately before L

. Insert T:=T+S*C, where S is the step size, at the end of

L's body

Optimize Loops —Strength Reduction

* Suppose induction variable I takes on values I,
I,+S, I +25, I_+3S... initerations], 2, 3,
4, and so on...

* Then, in consecutive iterations, Expression
I*C+D takes on values

I *C+D
(I+S)*C+D = I_*C+S*C+D
(I+2S)*C4D = I_*C+2S*C+D

* The expressioh.éhanges by a constant S*C
* Therefore, we have replaced a * and + with a +

Optimize Loops — Strength Reduction

* Example (Applying to innermost loop)

for I = 1 to 100 for I=1 to 100
for J = 1 to 100 m) temp3=Addr(A[i])
for K = 1 to 100 for J=1 to 100
A[I][I][K] = (I*J)*K templ=Addr (temp3(J))
temp2=I*]
o for K=1 to 100
temp2=I*] templ[K]=temp2*K
tempd=temp2 J
//S=1 for K=1 to 100
//C=temp2 templ[K]=temp4

temp4=temp4+temp2 71

Optimize Loops — Strength Reduction

* Exercise (Apply to intermediate loop)

for I=1 to 100 ..
temp3=Addr(A[1i]) - temp2=I*]
for J=1 to 100 tempd=temp2
templ=Addr(temp3(J)) for K=1 to 16060

temp2=I*] templ[K]=temp4d
for K=1 to 100 tempd=temp4+temp2
templ[K]=temp2*K J

// Induction var = J
//S =1

// Expression =1 *]

Optimize Loops — Strength Reduction

* Exercise (Apply to intermediate loop)

temp5=1
for J=1 to 100
templ=Addr(temp3(3J))
temp2=temp5
temp4=temp2 4—’
for K=1 to 100
templ[K]=temp4
tempd=temp4+temp2
temp5=temp5+1

Optimize Loops — Strength Reduction

* Further strength reduction possible?

for I=1 to 100
temp3=Addr(A[i])
temp5=I
for J=1 to 100

templ=Addr(temp3(3J))

temp2=temp5

temp4=temp2

for K=1 to 100
templ[K]=temp4
temp4=temp4+temp2

tempS5=temp5+1

Optimize Loops — Loop Unrolling

® Modifying induction
variable in each iteration
can be expensive

® Can instead unroll loops
and perform multiple
iterations for each
increment of the
induction variable

® What are the advantages
and disadvantages’

for (1

Al1]

@; 1 < N; 1++)

l Unroll by factor of 4

for (1 =

Al1+1]
Al1+2]
Al1+3]

Q; 1 < N; 1 += 4)
A[1] = ...

75

Optimize Loops - Summary

® [ow level optimization
® Moving code around in a single loop

® Examples: loop invariant code motion, strength
reduction, loop unrolling

® High level optimization
® Restructuring loops, often affects multiple loops

® Examples: loop fusion, loop interchange, loop tiling

76

L

Useful optimizations

Common subexpression elimination (global)
® Need to know which expressions are available at a point
Dead code elimination

® Need to know if the effects of a piece of code are never
needed, or if code cannot be reached

Constant folding
® Need to know if variable has a constant value

So how do we get this information?

Dataflow analysis

® Framework for doing compiler analyses to drive optimization

® Works across basic blocks

® Examples

Constant propagation: determine which variables are
constant

Liveness analysis: determine which variables are live

Available expressions: determine which expressions are
have valid computed values

Reaching definitions: determine which definitions could
“reach” a use

Liveness — Recap..

X def{:ed here X is live at 1
1: %X = 10 ..used in future
N: Y= X+5
X used here

* A variable X is live at statement S if:
 Thereis a statement S’ that uses X
e ThereisapathfromSto¥S
* There are no intervening definitions of X

Liveness — Recap..

10 Xisdead at 1
Y + 2

1: X
2: X

N: Y =X+ 5

e A variable X is dead at statement S if it is not live at S
e Whatabout ..;X =X + 1°?

80

Liveness in a CFG

&

\ Given that e does not use
X = €] X,Xis definitely dead here
(i.e. before the statement).

* Defineaset LiveIn(b), where b is a basic
block, as: the set of all variables live at the
entrance of a basic block

Liveness in a CFG

X = ... | Xisdefined here

* Define a set Def(b), where b is a basic block,
as: the set of all variables that are defined within

block b

Liveness in a CFG

X

e

If X is live here (i.e. after the
statement), X is used in some

Z////NQSS::::\ingESSOF

* Define aset LiveOut(b), where b is a basic
block, as: the set of all variables live at the exit of
a basic block

Liveness in a CFG

X =

e

If X is live here (i.e. after the
statement), X is used in some

/N:CESSOF

 If S(b) is the set of all successors of b, then

LiveOut(b) = U; ¢g(p) Liveln(i)

Liveness in a CFG

<

. =X

X must be live here (i.e.
before the statement)

* Define aset LiveUse(b), where b is a basic
block, as: the set of all variables that are used
within block b. LiveIn(b) 2 LiveUse(b)

Liveness in @ CFG - Observation

.. =Y
< |f Xis not live here / X is live here

X not live here / X is live here

|/f a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

Under what scenarios can a variable be live at
the entrance of a basic block?

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

Under what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

Under what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Liveness in a CFG

Under what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

LiveIn(b) = LiveUse(b) U (LiveOut(b) -
Def (b))

Liveness in a CFG - Example

e Draw CFG for the code:

A:=1
if A=B then
B:=1
else
C:=1
endif
D:=A+B

B

1
91

A :=
A =

D

A+B

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets
1

b
A :=1
A =B
b3
b4

Block | Def |LiveUse

bl b2
e B :=1
b3
b4

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets
1

b
A :=1
A =B
b3
b4

Block | Def |LiveUse

b1 A} {B) b
b2 B :=1
b3
b4

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets
1

b
A :=1
A =B
b3
b4

Block | Def |LiveUse

b1 (A} (B} b2
b2 CYRRY 3 e 1
b3
bl

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets
1

b
A :=1
A =B
b3
b4

Block | Def |LiveUse

b1 (A} {8} b2
b2 B 0 2 .o g
b3 (G

bl

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets
1

b
A :=1
A =B
b3
b4

Block | Def |LiveUse

bl (A} {B) b2
b2 B} {))
b3 O {

bl {D} {A,B}

e start from use of a variable to its definition.

Liveness in a CFG - Example

Is this analysis going backward or forward w.r.t. control flow?

Block | Def |LiveUse

bl
b2
b3
bl

{A}
{B}
1C}
{D}

{B}
i

U
{A,B}

B

b2
=1

[J
A :=
A =
b4

1

B
b3 |
97

Liveness in a CFG - Example

e start from use of a variable to its definition.
Backward-flow problem

A
A =

Block | Def |LiveUse

bl {A} {B}

1

B

b3 |
b2 B} {}

b4 {D} {A,B} o

98

Liveness in a CFG - Example

e Start from use of a variable to its definition.
*Compute:

LiveIn(b) = LiveUse(b) U (LiveOut(b) - Def(b))

Block | Def |LiveUse

bl A} {B}
b2 B U
b3 (S Y

bl {D} {A,B}

99

Liveness in a CFG - Example

e Start from use of a variable to its definition.

*Compute:

LiveIn(b)

Block | Def |LiveUse [l Block Liveln |LiveOut ___

bl {A}
b2 {B}
b3 {C}

bl {D}

LiveUse(b) U

{B}

{

i
{AB}

(LiveOut(b) - Def(b))

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
b4 {A,B} {}

100

Liveness in a CFG - Example

* Assume that the CFG below represents your entire program
*What can you infer from the table?

Block | Liveln |LiveOut

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
b4 {A,B} {}

b2

B :=1

1
B
b3 |

(J
A
A =

b4

Liveness in a CFG - Example

* Assume that the CFG below represents your entire program
°Variable B is live in b1, the entry basic block of CFG. This
mplies that B is used before it is defined. An error!

i

Block | Liveln |LiveOut

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
b4 {A,B} {}

102

