CS406: Compilers

Spring 2021

Week 11: Local Optimizations - Register
Allocation, Instruction Scheduling

(slide courtesy: Prof. Milind Kulkarni)



Register Allocation

« Simple code generation (in CSE example): use a register
for each temporary, load from a variable on each read, store

to a variable at each write

*What are the problems?
*Real machines have a limited number of registers — one register
per temporary may be too many

» Loading from and storing to variables on each use may produce a
lot of redundant loads and stores



Register Allocation

*Goal: allocate temporaries and variables to registers to:
*Use only as many registers as machine supports

*Minimize loading and storing variables to memory (keep variables
In registers when possible)

*Minimize putting temporaries on stack (“spilling”)



Global vs. Local

«Same distinction as global vs. local CSE
Local register allocation is for a single basic block

*Global register allocation is for an entire function (but not inter-
procedural — why?)

When we handle function calls, registers are pushed/popped from stack



Top-down register allocation

® For each basic block

® Find the number of references of each variable

® Assign registers to variables with the most references
® Details

e Keep some registers free for operations on unassigned
variables and spilling

® Store dirty registers at the end of BB (i.e., registers which
have variables assigned to them)

® Do not need to do this for temporaries (why?)



Bottom-up register allocation

Smarter approach:

® Free registers once the data in them isn’t used anymore
Requires calculating liveness

e A variable is live if it has a value that may be used in the future
Easy to calculate if you have a single basic block:

® Start at end of block, all local variables marked dead

e |f you have multiple basic blocks, all local variables defined in the
block should be live (they may be used in the future)

® When a variable is used, mark as live, record use
® \When a variable is defined, record def, variable dead above this
e Creates chains linking uses of variables to where they were defined

We will discuss how to calculate this across BBs later



Liveness Example
* What is live in this code?

1: A=B + C
2: C=A+ B
3: T1 =B + C
4: T2 =Tl + C

5: D =T2
6: E=A + B
/7: B=E+ D
8: A=C+ D
9: T3 = A+ B

- 10: WRITE(T3)

Live

{A, B}
1A,
1A,
1A,
{A,
G,
{B,
1A,
{13}
{}

o

o

o

o

N U m W W W
\o

(v 9)
- .

C}
c, T1}
C, T2}
C, D}
E}
D}

Comments

Used B, C Killed A
Used A, B Killed C

Used B, C Killed T1
Used T1, C Killed T2

Used T2, Killed D
Used A, B Killed E

Used E, D Killed B
Used C, D Killed A

Used A, B Killed T3
Used T3



Bottom-up register allocation

For each tuple opA B Cin a BB, do
Rx = ensure(A)
Ry = ensure(B)
if A dead after this tuple, (Rx)
if B dead after this tuple, (Ry)
R: = (C) /lcould use Rxor Ry
generate code for op
mark Rz dirty

At end of BB, for each dirty register
generate code to store register into appropriate variable

® We will present this as if A, B, C are variables in memory.
Can be modified to assume that A, B and C are in virtual
registers, instead



Bottom-up register allocation

ensure(opr)
if opr is already in register r
return r
else
r = allocate(opr)
generate load from opr into r
return r

(r)
if r is marked dirty and variable is live
generate store

mark r as free

(opr)
if there is a free r

choose r
else

choose r to free

free(r)
mark r associated with opr
return r




Bottom-up register allocation - Example

1: A =7
2: B=A+ 2
3: C=A+8B
4: D =A + B
5. A=C+ B
6: B=C + B
7: E=C+ D
8: F=C+ D
9: G=A+ B
10: H=E + F
11: T =H + G

12: WRITE(I)

Live
1A}
1A, B}
{A) BJ
{B,
{A,
{A,
{A,
{A,
{E,
{H,
11}
1}

J

J)

o

o

MM W w W W N
\o

()]
—- .

C, D}
C, D}

C, D, E}
E, F}

R1
A*
A*

A*
D*
D*
D*
D*
F*
F*
H*
I*

Registers
R2 R3 R4
B*
B* |C*
B* |C* (
B* |C* |A*
B* |C* |A*
EX [C* |A*
(spill n
E* .stor'e!&‘l'lfwc
E* |G*
(LG3 |sinc
-ree

mov 7 rl
add rl 2 r2

add rl r2 r3

2dd 03 248ty

add r3 r2 r4

add r3 r2 r2

st r2 B;
add r3 rl r2

2 - farthes

dd %?Pf#;
]%Rmeewdbmdr

1d b r3; Y)
add r4 r3 r3

eaddno2 th pig.
9537 1°83) g
write ril

10




Exercise

Do bottom-up register allocation with 3 registers. When choosing a register to
allocate always choose the lowest numbered one available. When choosing
register to spill, choose the non-dirty register that will be used farthest in future.
If all registers are dirty, choose the one that is used farthest in future. In case of

a tie, choose the lowest numbered register,. A = B + C
C=A+8B
T1 =B + C
T2 =T1 + C
D = T2
E=A+8B
B=E+D
A=C+D
T3 =A+ B

WRITE(T3) 11



Instruction Scheduling

12



Instruction Scheduling

Code generation has created a sequence of assembly
instructions

But that is not the only valid order in which instructions could
be executed!

LD A,RI LD C,R4
LD B,R2 LD B, R2
R3 =RI +R2 LD A,RI
LD C, R4 » R5=R4*R2
R5 = R4 * R2 R3 =RI +R2
R6 =R3 +R5 R6 =R3 +R5
ST R6,D ST R6,D

Different orders can give you better performance, more
instruction level parallelism, etc.

13



Why do Instruction Scheduling?

® Not all instructions are the same

® |oads tend to take longer than stores, multiplies tend to
take longer than adds

® Hardware can overlap execution of instructions (pipelining)
® (Can do some work while waiting for a load to complete

® Hardware can execute multiple instructions at the same
time (superscalar)

® Hardware has multiple functional units

14



Why do Instruction Scheduling? Contd..

® VLIW (very long instruction word)

Popular in the 1990s, still common in some DSPs

Relies on compiler to find best schedule for instructions,
manage instruction-level parallelism

Instruction scheduling is vital

® OQut-of-order superscalar

Standard design for most CPUs (some low energy chips, like
in phones, may be in-order)

Hardware does scheduling, but in limited window of
instructions

Compiler scheduling still useful to make hardware’s life easier

15



How to do Instruction Scheduling?

« Consider constraints on schedule:
Data dependences between instructions
*Resource constraints

*Schedule instructions while respecting constraints
eList scheduling
*Height-based heuristic

16



Data dependence constraints

* Are all instruction orders legal?

a=b + C

\

d=a+ 3

N

e=f+d

* Dependences between instructions prevent reordering

17



Data dependences

Variables/registers defined in one instruction are used in a
later instruction: flow dependence

Variables/registers used in one instruction are overwritten
by a later instruction: anti dependence

Variables/registers defined in one instruction are
overwritten by a later instruction: output dependence

Data dependences prevent instructions from being
reordered, or executed at the same time.

18



Other constraints

® Some architectures have more than one ALU

b*c These instructions do not have any
e+ f dependence. Can be executed in parallel

® But what if there is only one ALU?

Cannot execute in parallel

If a multiply takes two cycles to complete, cannot even

execute the second instruction immediately after the
first

¢ Resource constraints are limitations of the hardware
that prevent instructions from executing at a certain time

19



Representing constraints

® Dependence constraints and resource constraints limit
valid orders of instructions

® [nstruction scheduling goal:

® For each instruction in a program (basic block), assign it
a scheduling slot

® Which functional unit to execute on, and when
® As long as we obey all of the constraints

® So how do we represent constraints?

20



Data dependence graph

Graph that captures data dependence constraints
Each node represents one instruction

Each edge represents a dependence from one instruction
to another

Label edges with instruction latency (how long the first
instruction takes to complete = how long we have to wait
before scheduling the second instruction)

21



ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle

Example

LD A,RI
LD B, R2
R3 =Rl +R2
LD C,R4
R5 = R4 * R2
R6 = R3 +R5
ST R6,D

22



Example

23



Reservation tables

e Represent resource constraints using reservation tables

e For each instruction, table shows which functional units are
occupied in each cycle the instruction executes

® # rows: latency of instruction
® # columns: number of functional units

e T[i][j] marked <« functional unit j occupied during cycle i

e (Caveat: some functional units are pipelined: instruction
takes multiple cycles to complete, but only occupies the
unit for the first cycle

e Some instructions have multiple ways they can execute: one
table per variant

24



Example

Two ALUs, fully pipelined

One LD/ST unit, not pipelined

ADDs can execute on ALUO or ALUI

MULs can execute on ALUO only

LOADs and STOREs both occupy the LD/ST unit

ALUO |ALUl1 |LD/ST

25



Example

* Two ALUSs, fully pipelined
* One LD/ST unit, not pipelined

ALUO |ALUl1 |LD/ST




Example

* Two ALUSs, fully pipelined
* One LD/ST unit, not pipelined
* ADDs can execute on ALUO or ALU1

ALUO

ALU1

LD/ST

ADD (1)

ALU® |ALU1 |LD/ST
X
ADD (2)

27



Example

* Two ALUSs, fully pipelined

* One LD/ST unit, not pipelined
« ADDs can execute on ALUO or ALU1

« MULs can execute on ALUO only

ALUO

ALU1

LD/ST

X

MUL

28



Example

* Two ALUSs, fully pipelined

* One LD/ST unit, not pipelined

* ADDs can execute on ALUO or ALU1
« MULSs can execute on ALUO only

LOADs and STOREs can execute on LD/ST unit only

ALUO

ALU1

LD/ST

X

LOAD

ALUO

ALU1

LD/ST

STORE

29



Example

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LD/ST
MUL X

Can use reservation tables to see if instructions
can be scheduled: see if tables overlap

MUL still takes two
cycles. Since ALU is fully
pipelined, only occupies

the ALU for |

30



Using tables

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LDAST Which of the sequences below are valid?
MUL X | = run instructions in same cycle
; = move to next cycle

ADD |ADD v MUL;MUL |ADD v
ADD |MUL Vv LOAD | MUL v STORE ; LOAD v
MUL | MUL x LOAD ;STORE x



Scheduling

Can use these constraints to schedule a program

Data dependence graph tells us what instructions are
available for scheduling (have all of their dependences
satisfied)

Reservation tables help us build schedule by telling us
which functional units are occupied in which cycle

32



.
2.

List scheduling

Start in cycle O
For each cycle

Determine which
instructions are
available to execute

2. From list of

instructions, pick one
to schedule, and
place in schedule

3. If no more

instructions can be
scheduled, move to
next cycle

Cycle

ALUO

ALUI

LD/ST

0

VjoOo|N]jocjn] bW

o

33




List scheduling - Example

Cycle # Available  Scheduled = Completed
\Instruction(s) Instruction(s) Instruction(s)

1. LD A, R1 /
2. LD B, R2 0 1124 |1
3. R3 = R1 + R2 WEW
4. LD EJ R4* 5 2'4 % |1 *an instruction from the
5. R5 = R4 * R2 ‘ list of available
6. R6 = R3 + R5 3 |4 instructions is picked at
7. ST R6, D 4 |34 34 |2 random and scheduled
5 3
Cne D e (!
RS = R4 * R2
8 |6 6 5
) 10 7
ST R6 D >



List scheduling

|.LD A,RI
2.LD B,R2
3.R3=RI +R2
4.LD C,R4
5.R5 =R4 *R2
6.R6 =R3 +R5
7.ST R6,D

Cycle ALUO ALU | LD/ST

0 I
I I
2 2
3 2
4 3 4
5 4
6 5

7

8 6

9 7
10

35



Height-based scheduling

Important to prioritize instructions

® |nstructions that have a lot of downstream instructions
dependent on them should be scheduled earlier

Instruction scheduling NP-hard in general, but height-
based scheduling is effective

Instruction height = latency from instruction to farthest-away
leaf

® |eaf node height = instruction latency

® |Interior node height = max(heights of children +
instruction latency)

Schedule instructions with highest height first

36



Computing heights

Height = height of

child + latency
maX(S, 6) =6 :4+2

(6)

Height =5
because height =
height of child +

GRS
because height =
height of child + latency
=2+1
Height = max(height of
all children) + latency
=max(3,4)+2=4+2 1

Height = 1
@(1) because latency of ST =1

37

(4) Height = 2
because height = height of
child + latency =2 + 2

5 Height = 2
(2) because height = height of
child + latency =1 + 1




Height-based list scheduling

|.LD A,RI
2.LD B,R2
3.R3 =RI| +R2
4.LD C,R4
5.R5 = R4 * R2
6.R6 = R3 +R5
7.ST R6,D

Cycle ALUO ALUI LD/ST

0 2
I 2
2 4
3 4
4 5 I
5 I
6 3

7 6

8 7

9

|0

38



Instruction Scheduling - Exercise

2 ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available.

Either of the ALUs can execute ADD (1 cycle). Only one of the ALUs can
execute MUL (2 cycles).

L Ds take up an ALU for 1 cycle and LD/ST unit for two cycles.

*STs take up an ALU for 1 cycle and LD/ST unit for one cycle.

1) Draw reservation tables, ii)DAG for the code shown iii) schedule using height
based list scheduling.

1: LD AR1 11: ST R10 E
2: LD B R2 12: ST R7 F
3: LD C R3

4: LD D R4

5: R5 = R1 + R2

6: R6 = R5 * R3

/7: R7 = R1 + R6

8: R8 = R6 + R5

9: RS = R4 + R7

10: R10 = R9 + R8 39



