
CS406: Compilers
Spring 2021

Week 11: Local Optimizations - Register 
Allocation, Instruction Scheduling

(slide courtesy: Prof. Milind Kulkarni)

1



Register Allocation

2

• Simple code generation (in CSE example): use a register 

for each temporary, load from a variable on each read, store 

to a variable at each write

•What are the problems?

•Real machines have a limited number of registers – one register 

per temporary may be too many

• Loading from and storing to variables on each use may produce a 

lot of redundant loads and stores



Register Allocation

3

•Goal: allocate temporaries and variables to registers to:

•Use only as many registers as machine supports

•Minimize loading and storing variables to memory (keep variables 

in registers when possible)

•Minimize putting temporaries on stack (“spilling”)



Global vs. Local

4

•Same distinction as global vs. local CSE
•Local register allocation is for a single basic block

•Global register allocation is for an entire function (but not inter-

procedural – why?)

When we handle function calls, registers are pushed/popped from stack



5



6



Liveness Example

7

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

{A, B}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Used B, C Killed A



8



9



Bottom-up register allocation - Example

10

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2
(spill r2 – farthest, 
store if live and dirty)F* E*    A* add r3 r1 r1

(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3
(Load since B not in reg. 

Free dead regs)
H*    G* add r2 r1 r1

I* add r1 r3 r1

write r1



Exercise

11

A = B + C

C = A + B

T1 = B + C

T2 = T1 + C

D = T2

E = A + B

B = E + D

A = C + D

T3 = A + B

WRITE(T3)

Do bottom-up register allocation with 3 registers. When choosing a register to

allocate always choose the lowest numbered one available. When choosing

register to spill, choose the non-dirty register that will be used farthest in future.

If all registers are dirty, choose the one that is used farthest in future. In case of

a tie, choose the lowest numbered register.



Instruction Scheduling

12



Instruction Scheduling

13



Why do Instruction Scheduling?

14



Why do Instruction Scheduling? Contd..

15



How to do Instruction Scheduling?

16

• Consider constraints on schedule:

•Data dependences between instructions 

•Resource constraints

•Schedule instructions while respecting constraints

•List scheduling

•Height-based heuristic



17

Data dependence constraints

• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d

• Dependences between instructions prevent reordering



18



19



20



21



22



23

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Example



24



25

ALU0 ALU1 LD/ST



26

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

ALU0 ALU1 LD/ST



27

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ADD (1) ADD (2)



28

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

ALU0 ALU1 LD/ST

X

MUL



29

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

•LOADs and STOREs can execute on LD/ST unit only

ALU0 ALU1 LD/ST

X
ALU0 ALU1 LD/ST

X

LOAD STORE



30



31



✓

✓ ✓

✓ ✓





32



33



List scheduling - Example

34

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

0 1, 2, 4 1*

1 2, 4

2 2, 4 2* 1

3 4

4 3, 4 3, 4 2

5 3

6 5 5 4

7

8 6 6 5

9 7 7 6

10 7

Cycle # Available 

Instruction(s)

Scheduled 

Instruction(s)

Completed 

Instruction(s)

*an instruction from the 

list of available 

instructions is picked at 

random and scheduled



35



36



37

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

Height = 1 

because latency of ST = 1 

Height = 2 

because height = height of 

child + latency = 1 + 1 

Height = 2 

because height = height of 

child + latency = 2 + 2 

Height = 3 

because height = 

height of child + latency 

= 2 + 1 

Height = 5 

because height = 

height of child + 

latency = 3 + 2 

Height = max(height of 

all children) + latency 

= max(3, 4) + 2 = 4 + 2 

Height =  height of 

child + latency 

= 4 + 2



38



Instruction Scheduling - Exercise

39

1: LD A R1

2: LD B R2

3: LD C R3

4: LD D R4

5: R5 = R1 + R2

6: R6 = R5 * R3

7: R7 = R1 + R6

8: R8 = R6 + R5

9: R9 = R4 + R7

10: R10 = R9 + R8

•2 ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available.

•Either of the ALUs can execute ADD (1 cycle). Only one of the ALUs can

execute MUL (2 cycles).

•LDs take up an ALU for 1 cycle and LD/ST unit for two cycles.

•STs take up an ALU for 1 cycle and LD/ST unit for one cycle.

i) Draw reservation tables, ii)DAG for the code shown iii) schedule using height

based list scheduling.

11: ST R10  E

12: ST R7  F


