CS406: Compilers

Spring 2021

Week 10: Local Optimizations
(slide courtesy: Prof. Milind Kulkarni)



Naive approach

® “Macro-expansion”

® Treat each 3AC instruction separately, generate code in
isolation

LD A,RI
LD B, R2
ADD RI,R2,R3
ST R3,C

ADDA,B,C ——

LD A,RI

MOV 4, R2
MUL RI,R2,R3
ST R3,B

MULA, 4,B >



Why is this bad? (I)

LD A, RI

MOV 4,R2
MULA,4,B - MUL R1,R2,R3

ST R3,B

LD A, RI
MULA,4,B » MULIRI, 4,R3
ST R3,B

Too many instructions

Should use a different instruction type




Why is this bad? (ll)

LD A, R
LD B, R2
ADD RI,R2,R3
ST R3,C

ADDAB,C —m—m——>

LD A, RI
LD B, R2
ADD RI1,R2,R3
ADDA, B, C ST R3,C
ADD C,AE LD C, R4
LD A, R5
ADD R4,R5,R6

Redundant load of A ST R6,E

Uses a lot of registers

Redundant load of C




Why is this bad? (Ill)

ADDABC ——

ADDA,B,C
ADDA,B,D

Wasting instructions recomputing A + B

LD A, RI
LD B, R2
ADD RI1,R2,R3
ST R3,C

LD A,RI
LD B, R2
ADD RI,R2,R3

ST R3,C

LD A, R4
LD B, R5
ADD R4,R5,R6

ST R6,D



How do we address this?

® Several techniques to improve performance of generated
code

® [nsiruction selection to choose better instructions
® Peephole optimizations to remove redundant instructions

® Common subexpression elimination to remove redundant
computation

® Register allocation to reduce number of registers used



Instruction selection

® Even a simple instruction may have a large set of possible
address modes and combinations

+ABC

I—O Can be indirect, register, memory
address, indexed, etc.

® Can be literal, register, memory
address, indexed, etc.

® Can be literal, register, memory
address, indexed, etc.

® Dozens of potential combinations!



More choices for instructions

® Auto increment/decrement (especially common in
embedded processors as in DSPs)

® e.g,load from this address and increment it
® Why is this useful?
® Three-address instructions

® Specialized registers (condition registers, floating point
registers, etc.)

® “Free” addition in indexed mode

MOV (Rl)offset R2
® Why is this useful?



Peephole optimizations

® Simple optimizations that can be performed by pattern
matching

® [ntuitively, look through a “peephole” at a small segment
of code and replace it with something better

® Example:if code generator sees ST R X; LD X R,
eliminate load

® Can recognize sequences of instructions that can be
performed by single instructions

LDI R1 RZ2; ADD R1 4 R1 replaced by

LDINC R1 R2 4 //load from address in RI then inc by 4



Peephole optimizations

® Simple optimizations that can be performed by pattern
matching

® [ntuitively, look through a “peephole” at a small segment
of code and replace it with something better

® Example:if code generator sees ST R X; LD X R,
eliminate load

Get the data present at address in R2 and put it in R1 be

LDI R1 R2; ADD R1 4 R1 replaced by

LDINC R1 R2 4 //load from address in RI then inc by 4

10



Peephole optimizations

® Constant folding
ADD 1it1, 1it2, Rx —> MOV 1itl + 1it2, Rx

MOV 1itl, Rx

ADD 1i2, Rx, Ry —>» MOV 11tl1l + 11t2, Ry

® Strength reduction

MUL operand, 2, Rx == SHIFTL operand, 1, RXx
DIV operand, 4, Rx =—» SHIFTR operand, 2, RX

® Null sequences

MUL operand, 1, Rx =—» MOV operand, Rx

ADD operand, @, Rx —» MOV operand, Rx

11



Peephole optimizations

Combine operations

JEQ L1
IMP L2 —>» JNE L2
L1:

Simplifying
SUB operand, @, Rx =3 NEG RXx

Special cases (taking advantage of ++/--)

ADD 1, Rx, Rx —> INC Rx
SUB Rx, 1, Rx —> DEC Rx
Address mode operations

MOV A R1

ADD @(R1) RZ R3 ADD @A Rz R3



Superoptimization

Peephole optimization/instruction selection writ large

Given a sequence of instructions, find a different sequence
of instructions that performs the same computation in less
time

Huge body of research, pulling in ideas from all across
computer science

® Theorem proving

® Machine learning

13



Common subexpression
elimination

Goal: remove redundant computation, don’t calculate the
same expression multiple times

LA=B*C
2E=B*C

Difficulty: how do we know when the same expression will
produce the same result?

I:A=B*C B is “killed.” Any expression using B is
no longer “available,” so we cannot

’ reuse the result of statement | for
3E=B*C statement 3

2: B = <new value>

This becomes harder with pointers (how do we know
when B is killed?)

14



Common subexpression
elimination

® Two varieties of common subexpression elimination (CSE)

® |ocal: within a single basic block

Easier problem to solve (why?)

® Global: within a single procedure or across the whole
program

Intra- vs. inter-procedural
More powerful, but harder (why?)

Will come back to these sorts of “global” optimizations
later

15



CSE in practice

|dea: keep track of which expressions are “available” during
the execution of a basic block

® Which expressions have we already computed?

® |[ssue: determining when an expression is no longer
available

® This happens when one of its components is
assigned to, or “killed.”

|dea: when we see an expression that is already available,
rather than generating code, copy the temporary

® |[ssue: determining when two expressions are the same

16



Maintaining available expressions

® For each 3AC operation in a basic block

® Create name for expression (based on lexical
representation)

® [f name not in available expression set, generate code,
add it to set

® Track register that holds result of and any variables
used to compute expression

® [f name in available expression set, generate move
instruction

® |f operation assigns to a variable, kill all dependent
expressions

17



3 Address Code

ADD A B T1

ADD T1 C T2
ADD A B T3
ADD T1 T2 C

ADD T1 C T4
ADD T3 T2 D

Example

Available expression(s)

1}
{“A +
{“A +
{“A +

{“A +
{“A +

{“A +

“T1 + C”, “T3 + T2”}

B)J}
B)J 5
BJ) ,
BJJ 5
BJJ ,

“T1 + C’}

¢ 3

“T1 + T2”}
“T1 + T2”,

“T1 + C’}

D
B~,

“T1 + T2”,

Killed
expression(s)

{“T1+C”}

Generated Code
(assembly)

1d a ril;
1d b r2;

add rl r2 ri

add rl c r2
mov rl r3

add rl r2 r5
st r5 c

add rl c r4

add r3 r2 ré
st ré6 d

18



Downsides (CSE)

® What are some downsides to this approach?! Consider the
two highlighted operations

Three address code Generated code
+ ABT1 ADD A B R1
+ T1 C T2 ADD R1 C R2
+ AB T3 MOV R1 R3
+ 11/ T2 C ADD R1 RZ2 R5; ST R5 C
+ 71 C T4 ADD R1 C R4
+ T3|T2 D STR5D

T1 and T3 compute the same expression. This can be handled by an
optimization called value numbering.

19



Aliasing

* One of the biggest problems in compiler analysis is to
recognize aliases — different names for the same location
IN memory

exercise: are T1 and T3 aliased in previous example?
*Why do aliases occur?

*Pointers referring to the same location

*Function calls passing the same reference in two arguments
*Arrays referencing the same element

*Unions

*\WWhat problems does aliasing pose for CSE?
*when talking about “live” and “killed” values in optimizations like
CSE, we're talking about particular variable names

*In the presence of aliasing, we may not know which variables get
killed when a location is written to 20



Memory disambiguation

® Most compiler analyses rely on memory disambiguation

® Otherwise, they need to be too conservative and are
not useful

® Memory disambiguation is the problem of determining
whether two references point to the same memory
location

® Points-to and alias analyses try to solve this

® Wil cover basic pointer analyses in a later lecture

21



