
CS406: Compilers
Spring 2021

Week 10: Local Optimizations
(slide courtesy: Prof. Milind Kulkarni)

1

2

3

4

5

6

7

8

9

10

Get the data present at address in R2 and put it in R1

11

12

13

14

15

16

17

Example

18

Generated Code

(assembly)

3 Address Code Available expression(s)

Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”,
“T1 + C”, “T3 + T2”}

add r1 r2 r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

ld a r1;
ld b r2;

Downsides (CSE)

19

T1 and T3 compute the same expression. This can be handled by an

optimization called value numbering.

ST R5 D

Aliasing

20

• One of the biggest problems in compiler analysis is to

recognize aliases – different names for the same location

in memory

•Why do aliases occur?

•Pointers referring to the same location

•Function calls passing the same reference in two arguments

•Arrays referencing the same element

•Unions

•What problems does aliasing pose for CSE?
•when talking about “live” and “killed” values in optimizations like

CSE, we’re talking about particular variable names

•In the presence of aliasing, we may not know which variables get

killed when a location is written to

exercise: are T1 and T3 aliased in previous example?

21

