
1

CS406: Compilers
Spring 2020

Week1: Overview, Structure of a compiler

1

2

Intro to Compilers

• Way to implement programming languages

• Programming languages are notations for

specifying computations to machines

• Target can be an assembly code, executable,

another source program etc.

CompilerProgram TargetCompilerProgram Target

2

3

What is a Compiler?

Traditionally: Program that analyzes and translates from a high-level

language (e.g. C++) to low-level assembly language that can be

executed by the hardware

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {

b = 3;
}

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {

b = 3;
}

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {

b = 3;
}

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {

b = 3;
}

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {

b = 3;
}

slide courtesy: Milind Kulkarni

3

4

Compilers are translators

•Fortran

•C

•C++

•Java

•Text processing

language

•HTML/XML

•Command &

Scripting

Languages

•Natural Language

•Domain Specific

Language

▪Machine code

▪Virtual machine code

▪Transformed source

code

▪Augmented source

code

▪Low-level commands

▪Semantic components

▪Another language

translate

slide courtesy: Milind Kulkarni

4

5

Compilers are optimizers

• Can perform optimizations to make a program more

efficient

var a
var b
var c
mov a r1
addi 3 r1
mov r1 b
mov a r2
addi 3 r2
mov r2 c

int a, b, c;
b = a + 3;
c = a + 3;

var a
var b
var c
mov a r1
addi 3 r1
mov r1 b
mov r1 c

slide courtesy: Milind Kulkarni

5

6

Why do we need compilers?

• Compilers provide portability

• Old days: whenever a new machine was built, programs had to be

rewritten to support new instruction sets

• IBM System/360 (1964): Common Instruction Set Architecture

(ISA) --- programs could be run on any machine which supported

ISA

– Common ISA is a huge deal (note continued existence of x86)

• But still a problem: when new ISA is introduced (EPIC) or new

extensions added (x86-64), programs would have to be rewritten

• Compilers bridge this gap: write new compiler for an ISA, and then

simply recompile programs!

slide courtesy: Milind Kulkarni

6

7

Why do we need compilers?

• Compilers enable high-performance and productivity

• Old: programmers wrote in assembly language, architectures were

simple (no pipelines, caches, etc.)

• Close match between programs and machines --- easier to achieve

performance

• New: programmers write in high level languages (Ruby, Python),

architectures are complex (superscalar, out-of-order execution,

multicore)

• Compilers are needed to bridge this semantic gap

• Compilers let programmers write in high level languages and still get

good performance on complex architectures

slide courtesy: Milind Kulkarni

7

8

Semantic Gap

• Python code that actually runs on GPU

import pycuda
import pycuda.autoinit from pycuda.tools import
make_default_context
c = make_default_context()
d = c.get_device()
……

source: nvidia.com

Impossible without Compilers

8

9

Some common compiler types

1. High level language assembly language (e.g. gcc)

2. High level language machine independent bytecode (e.g.

javac)

3. Bytecode native machine code (e.g. java’s JIT compiler)

4. High level language High level language (e.g. domain-

specific languages, many research languages)

slide courtesy: Milind Kulkarni

How would you categorize a compiler that handles SQL queries?

9

10

HLL to Assembly

• Compiler converts program to assembly

• Assembler is machine-specific translator which converts assembly

to machine code

add $7 $8 $9 ($7 = $8 + $9) => 000000 00111 01000 01001 00000 100000

• Conversion is usually one-to-one with some exceptions

• Program locations

• Variable names

Program Assembly Machine codeCompiler Assembler

slide courtesy: Milind Kulkarni

10

11

HLL to Bytecode to Assembly

• Compiler converts program into machine independent

bytecode

• e.g. javac generates Java bytecode, C# compiler generates CIL

• Just-in-time compiler compiles code while program executes

to produce machine code

– Is this better or worse than a compiler which generates machine

code directly from the program?

Program Bytecode Machine codeCompiler JIT Compiler

slide courtesy: Milind Kulkarni

11

12

HLL to Bytecode

• Compiler converts program into machine independent

bytecode

• e.g. javac generates Java bytecode, C# compiler generates CIL

• Interpreter then executes bytecode “on-the-fly”

• Bytecode instructions are “executed” by invoking methods of

the interpreter, rather than directly executing on the machine

• Aside: what are the pros and cons of this approach?

Program Bytecode Execute!Compiler Interpreter

slide courtesy: Milind Kulkarni

12

13

Quick Detour: Interpreters

• Alternate way to implement programming

languages

Interpreter
Data

OutputProgram

Data

13

14

CompilerProgram Target

Data

Output

Interpreter
Data

OutputProgram

Data

Online

Offline

these are the two types of language processing systems

14

15

History

• 1954: IBM 704

– Huge success

– Could do complex math

– Software cost > Hardware cost

Source: IBM Italy,

https://commons.wikimedia.org/w/index.php?curid=48929471

How can we improve the efficiency of creating software?

Taking a peek at the history of how compilers and

interpreters came into existence: In 1954, IBM came

up with a hugely successful commercially available

machine. 704 was the first mass produced machine

with floating point hardware. As people started

buying this machine and using it, they found that

the software cost greatly exceeded the hardware

cost (coding was done using assembly language

then). Back then, hardware costed a Bomb and

software was beating the hardware cost! So, a

natural question was how to make software

development more productive?

15

16

16

History

• 1953: Speedcoding

– High-level programming language by John Backus

– Early form of interpreters

– Greatly reduced programming effort

– About 10x-20x slower

– Consumed lot of memory (~300 bytes = about 30%

RAM)

The earliest effort in improving the productivity of developing software was

called Speedcoding, developed by John Backus in 1953. Speedcode was the

name of the programming language and it was a high-level programming

language. The language provided pseudo-instructions for computing

mathematical functions such as sine, logs etc. A resident software analyzed

these instructions and called corresponding subroutines. So, this was an

example of what we know of interpreters today.

This scheme aimed at ease-of-use at the expense of consuming system

resources. For example, the interpreter consumed roughly 300 bytes, which

was 30% of the memory of 704. As a result, the programs ran 10-20 times

slower than handwritten programs.

17

Fortran I

• 1957: Fortran released

– Building the compiler took 3 years

– Very successful: by 1958, 50% of all software created

was written in Fortran

• Influenced the design of:

– high-level programming languages e.g. BASIC

– practical compilers

Today’s compilers still preserve the structure of Fortran I

Speedcoding was not popular but John backus thought it was promising and it

gave rise to another project. Those days, the most important applications were

weather prediction, finite element analysis, computational chemistry,

computational physics, computational fluid dynamics etc. Programmers wrote

formulas in a way that machines could understand and execute.

The problem with speedcoding was that the formulas were interpreted and

hence, led to slower programs. John Backus thought that if the formulas were

translated into a form that the machine can understand and execute, then it

would solve the problem. So, the formula translation or Fortran 1 project

started. Fortran 1 ran from 54 to 57 and ended up taking 3 years as against 1

year that they had predicted initially. So, people were not good at predicting

how long complex software development would take then. People are not good

now either. Some of you who read the “No Silver Bullets” paper would agree.

It was such a success that by 1958, 50% of all software developed was

implemented in Fortran.

So, everybody thought that 1) Fortran raised the level of abstraction 2) Made it

easier to use the machine 704.

Fortran 1 had a huge impact on computer science. This was the first compiler.

It led to an enormous body of theoretical work. One of the attractive things

about studying programming languages is that it involves a good mix of both

17

theoretical and practical subjects. You need to have a good grasp of theory as

well as good system building skills or engineering skills.

Fortran 1, also led to high-level programming languages such as BASIC. It

influenced compiler design in such a fundamental way that today’s compilers

still preserve the structure of Fortran 1.

So, what is the structure of Fortran 1 compiler?

17

18

Structure of a Compiler

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Fortran 1 compiler has 5 phases. Lexical analysis and Parsing take care of

syntactic aspects. Semantic aspects takes care of things like types (can I

assign a float to an int?), scope rules (what happens when we encounter a

variable that is not defined yet?) Optimization phase deals with transforming

the program into an equivalent one but that runs faster or uses less memory.

Finally, the code generation phase deals with translating the program into

another language. That another language might be machine code, bytecode,

or another high-level programming language.

18

19

Scanner

• Analogy: Humans processing English text

Rama is a neighbor vs. Ra mais an eigh bor.

• A compiler starts by seeing only program text

if (a < 4) {
b = 5

}

For some of the phases, we can have an analogy to how humans understand

natural language.

The first step in understanding a program for a compiler or English language

by a human is to recognize words (smallest unit above letters). Take the

example English sentence: “Rama is a neighbor”. We immediately recognize

the sentence as a group of 4 words. In addition, there are word separators

(blank spaces), punctuations (full-stop), and special notations (capital letter R).

Now, if you were given the other sentence, it doesn’t come to you immediately

what that sentence is saying. You have to work a bit to align the spaces and

understand.

The goal of lexical analysis or scanning is to recognize program text into

‘words’ or ‘tokens’ as it is called in compiler terminology. Take the example

code snippet.

19

20

Scanner

• A compiler starts by seeing only program text

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’

slide courtesy: Milind Kulkarni

The lexical analyzer starts by seeing program text as a series of letters.

20

21

Scanner

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

• Analogy: Humans processing English text
– recognize words in Rama is a neighbor.

• Rama, is, a, neighbor

• Additional details such as punctuations(.), capitalizations (R), blank
spaces.

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’

The lexical analyzer then converts the program text into tokens (that the small-

letter ‘i’ followed by small-letter ‘f’ is a token ‘if’, that the blankspace is a token,

that ‘(‘ is a token, and so on.) Just as in English text, we had punctuations, we

have ‘\n’s ‘\t’s and ‘ ‘s. We have operators ‘<‘ and ‘=‘. We have constant ‘4’. We

have variables ‘a’, and ‘b’. We have keywords ‘if’. We have more punctuations

‘(‘, ‘)’, ‘{‘,’}’

21

22

Scanner

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

• But we still don’t know what the syntactic structure of the

program is

if (ID(a) OP(<) LIT(4))

{ ID(b) OP(=) LIT(5) }

slide courtesy: Milind Kulkarni

So, the lexical analyzer produced a sequence, or a list of tokens as shown.

We still do not know whether there is some structure to that sequence. If there

is some structure, what is that structure?

22

23

Exercise

Convert the following program text into tokens:

pos = initPos + speed * 60

23

24

Parser

• Converts a string of tokens into parse tree or abstract

syntax tree

• Captures syntactic structure of the code (i.e. “this is an if
statement, with a then-block”

• Analogy: understand the English sentence structure

Rama is a good neighbor

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

To recognize the structure, a parser or syntactic analyzer comes into picture.

Our goal is to tell that the sequence of tokens is an if statement with a then

block.

Coming back to the analogy of how humans recognize structure, we have the

diagramming English sentences procedure. It is a simple procedure of drawing

a tree structure and identifying elements within the structure.

24

25

Parser - Analogy

• Diagramming English sentences

Rama is a good neighbor

Noun Verb Article Adjective Noun

ObjectSubject

Sentence

The first step is identifying the role of each word. Parsing groups the words

into higher level constructs like Subject, Verb, and Objects. That sequence of

Subject, Verb, and Object forms an entire sentence. This example of parsing

an English sentence is followed in parsing program text as well.

25

26

Parser

• Converts a string of tokens into parse tree or abstract

syntax tree

• Captures syntactic structure of the code (i.e. “this is an if
statement, with a then-block”)

if-stmt

stmt_list assign_stmt

b

5

b

5

a

4

<

slide courtesy: Milind Kulkarni

26

27

Exercise

Draw the syntax tree for the following program stmt:

pos = initPos + speed * 60

27

28

Semantic Actions

• Interpret the semantics of syntactic constructs

• Refer to actions taken by the compiler based on the

semantics of program statements.

• Up until now, we have looked at syntax of a program

– what is the difference?

slide courtesy: Milind Kulkarni

Once the structure is understood, we can try to understand the meaning of the

sentence. Here we do not have an analogy. Because we do not know how

humans understand the meaning of a sentence. We do know that humans first

recognize words, sentences much like compilers do lexical analysis and

syntactic analysis. For compilers, understanding the meaning of a syntactic

structure is too hard. Compilers perform limited semantic analysis for the

purpose of catching inconsistencies. They don’t really know what the program

is supposed to do. Semantic Actions refer to actions that the compiler takes

based on the semantics of program statements. What is the difference

between syntax and semantics?

28

29

Syntax vs. Semantics

• Syntax: “grammatical” structure of language
– What symbols, in what order, is a legal part of the

language?
• But something that is syntactically correct may mean nothing!

– “colorless green ideas sleep furiously”

• Semantics: meaning of language
– What does a particular set of symbols, in a particular

order mean?
• What does it mean to be an if statement?

– “evaluate the conditional, if the conditional is true, execute the then
clause, otherwise execute the else clause”

slide courtesy: Milind Kulkarni

Syntax refers to the grammatical structure of the language. Semantics refers

to the meaning.

29

30

Semantic Actions - What

• What actions are taken by compiler based on the semantics

of program statements ?

– Examples:

- Bind variables to their scopes:

Ram said Ram has a big heart

Programming languages have rules to resolve ambiguities like above:

int Ram = 1;

{

int Ram = 2;

..

}

- Check for type inconsistencies

Ram left her home in the evening

Are they referring to the same person?

30

31

Semantic Actions - What

• What actions are taken by compiler based on the semantics

of program statements ?

– Examples:

- Check for type inconsistencies

Ram left her home in the evening

- Programming languages have rules to enforce types

Usual naming conventions indicate that
there is a “type mismatch” between ‘Ram’
and ‘her’: they refer to different types.

31

32

Semantic Actions - How

• What actions are taken by compiler based on the semantics

of program statements ?

– Building a symbol table

– Generating intermediate representations

slide courtesy: Milind Kulkarni

32

33

Symbol Tables

• A list of every declaration in the program, along with other

information

• Variable declarations: types, scope

• Function declarations: return types, # and type of

arguments

Integer ii;
…
ii = 3.5;
…
print ii;

Name Type Scope
ii int global

…

slide courtesy: Milind Kulkarni

Example Program Symbol Table

33

34

Intermediate Representation

• Also called IR

• A (relatively) low level representation of the program

• But not machine-specific!

• One example: three address code

bge a, 4, done

mov 5, b

done: //done!

• Each instruction can take at most three operands

(variables, literals, or labels)

• Note: no registers!

slide courtesy: Milind Kulkarni

34

35

Exercise

Explain the semantics of the following program stmt:

pos = initPos + speed * 60

35

36

A Note on Semantics

• How do you define semantics?

– Static semantics: properties of programs

• All variables must have type

• Expressions must use consistent types

• Can define using attribute grammars

– Execution semantics: how does a program execute?

• Defined through operational or denotational semantics

• Beyond the scope of this course!

– For many languages, “the compiler is the specification”

slide courtesy: Milind Kulkarni

36

37

Optimizer

• Transforms code to make it more efficient

• Different kinds, operating at different levels

– High-level optimizations

• Loop interchange, parallelization

• Operates at level of AST, or even source code

– Scalar optimizations

• Dead code elimination, common sub-expression elimination

• Operates on IR

– Local optimizations

• Strength reduction, constant folding

• Operates on small sequences of instructions

slide courtesy: Milind Kulkarni

Here, making it more efficient may mean making it run faster or use less space

or use less power or reduce number of network messages or reduce the

number of database accesses or resource usage.

37

38

Optimizer - Analogy

Analogy: reducing word usage

Sunny felt a sense of having experienced it before

when his bike broke down.

Exercise: is this rule correct?

X = Y * 0 is the same as X = 0

Dejavu

No strong analogy in English. Maybe like editing text to reduce number of

words and find an equivalent word.

This rule would be incorrect for floating point X and Y. e.g. There is a special

floating point value called NaN (not a number). As per floating point rules, 0 *

NaN = NaN. So, if your optimizer inserted the above rule, it would be incorrect

for floating point values.

38

39

Code Generation

• Generate assembly from intermediate representation

– Select which instruction to use

– Select which register to use

– Schedule instructions

ld a, r1
mov 4, r2
cmp r1, r2
bge done
mov 5, r3
st r3, b
done:

bge a, 4 done
mov 5, b
done: //done

slide courtesy: Milind Kulkarni

Code Gen produces assembly code most commonly. It can also produce other

types of code such as bytecode, or another high-level language. Here, you are

translating from machine independent code (IR) to machine-specific code. In

this example, we need to select equivalent machine instruction(s) for “bge a, 4

done” which is an instruction in 3-operand code. In the translated code, we

would get the first four instructions. Overall, the translated code uses 3

registers (r1-r3) and uses the ‘bge’ instruction.

39

40

Code Generation

• Generate assembly from intermediate representation

– Select which instruction to use

– Select which register to use

– Schedule instructions

mov 4, r1
ld a, r2
cmp r1, r2
blt done
mov 5, r1
st r1, b
done:

bge a, 4 done
mov 5, b
done: //done

slide courtesy: Milind Kulkarni

We could also have a translation that uses at most 2 registers and that is using

a different instruction (blt).

40

41

41

Structure of a Compiler

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

Use regular expressions to define tokens. Can then use

scanner generators such as lex or flex.

Define language using context free grammars. Can then

use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area

(e.g. dataflow analysis frameworks)

Written manually.

slide courtesy: Milind Kulkarni

In summary, we have the modularization of compiler design into 5 stages. The

first stage takes source code and produces tokens. The second stage takes

tokens as input and produces a syntax tree. The third stage works on the

syntax tree and produces IR. The fourth stage optimizes IR based on machine

specific instructions and produces optimized IR. The last stage generates

executable after acting on optimized IR. Also shown in the slide is a brief

mention of how a compiler writer defines the ground rules for each stage.

Is this organization of compiler’s stages correct? What do you think?

42

Structure of a Compiler

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

Use regular expressions to define tokens. Can then use

scanner generators such as lex or flex.

Define language using context free grammars. Can then

use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area

(e.g. dataflow analysis frameworks)

Written manually.

slide courtesy: Milind Kulkarni

Modern compilers combine many of these passes.

42

43

Front-end vs. Back-end

Scanner / Lexical

Analysis

Parser / Syntax

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

• Scanner + Parser + Semantic actions + (high

level) optimizations called the front-end of a

compiler

front-end /

analysis

back-end /

synthesis

• IR level optimizations and code generation

(instruction selection, scheduling, register

allocation) called the back-end of a compiler

• Can build multiple front-ends for a particular

back-end

•e.g. gcc or g++ or many front-ends which

generate common intermediate language

(CIL)

• Can build multiple back-ends for a particular

front-end

•gcc allows targeting different architectures

slide courtesy: Milind Kulkarni

43

44

• Compiler and language designs influence each

other

– Higher level languages are harder to compile

• More work to bridge the gap between language and assembly

– Flexible languages are often harder to compile

• Dynamic typing (Ruby, Python) makes a language very flexible,

but it is hard for a compiler to catch errors (in fact, many simply

won’t)

– Influenced by architectures

• RISC vs. CISC

Design Considerations

The design of compilers and programming languages have influence on each

other. Higher-level languages are aimed programmer at productivity. In order

to talk to machines, first, you have to translate that language into one that is

closer to the language that machines understand. To do this translation or

bride this gap, compilers must work hard.

Flexible languages such as those that allow dynamic typing are harder to

compile. You have to catch the type errors at runtime. The check for conformity

on the type rules can be done at compile-time or run-time. If it is done at

compile-time they are statically-typed languages. If they are done at run-time

they are dynamically typed languages.

If a language requires that you declare the type before its use, it is statically

typed. Otherwise, it is dynamically typed

Compiler design is influenced by architectures. This is because the back-end

part of the compiler is machine-dependent. The back-end design is simplified

for RISC architectures because of a simpler set of instructions. If you have

string manipulation instructions available in the assembly, the compiler must

be able to recognize them in the source code. Is language-design influenced

by architectures?

It is said that C brought a lot of its design features form PDP-11 architecture

(CISC). What if you wanted to design an interpreted language that is compiled

44

down to some high-level language, which is then compiled and a machine

code is obtained? I wouldn’t care if I used CISC or RISC architecture.

44

45

Programming Languages and

Real-world Usage

• Why are there so many programming languages?

• Why are there new languages?

• What is a good programming language?

This slide asks few questions that help us understand how programming

languages are used in the real world.

45

46

Programming Languages and

Real-world Usage

• Why are there so many programming languages?

– Distinct often conflicting requirements of the application

domain

Scientific

Computing

Floating-Point Arithmetic,

Parallelism Support,

Array Manipulation

FORTRAN

Business

Applications

No data loss (persistence), Reporting

capabilities, Data analysis tools

SQL

Systems

Programming

Fine-grained control of system

resources, real-time constraints

C/C++

46

47

Programming Languages and

Real-world Usage

• Why are there new languages?

– To fill a technology gap

• E.g. arrival of Web and Java

• Java’s design closely resembled that of C++

• Widely-used languages are slow to change

• Easy to start a new language

Training a programmer on a new programming language is a dominant cost

47

48

Programming Languages and

Real-world Usage

• What is a good Programming Language?

No universally accepted argument

48

49

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 1 (Sections: 1.1 to 1.3, 1.5)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 1 (Sections 1.1 to 1.3, 1.5)

Suggested Reading

49

