
Finals Review
CS406: Compilers

Spring 2021

Practice Exercise: CFGs and low-level
loop optimizations

2

1. Draw CFG for the code shown.
Identify loops if any. For each
loop identified, mark entry node
and all basic blocks.
(refer to slides 10, 36, and 48 of week12)

2. Identify loop invariant
statements. Can they be moved
outside their enclosing loop?
(refer to slides 59, 65-67, week12)

3. Identify induction variables.
Show the code that results after
performing possible strength
reduction
(refer to slides 59, 65-69, week12)

3

1. X = 2;
2. Y = 10;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y + Z * -3;
9. Q = Y - 8;
10. Z = Z - Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

4

1. X = 2;
2. Y = 10;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y + Z * -3;
9. Q = Y - 8;
10. Z = Z - Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

1
2

3

4
5
6

7

8
9

10
11

12
13

B1

B2

B3

B4

B5

B6 B714
15

Loop headers/entry nodes: B2 and B4. The BBs in

the loop for B2 are: B2, B3, B4, B5, B6. The BBs in

the loop for B4 are: B4, B5.

5

Loop invariant statements: 6, 9.

• 6 cannot be moved, because Z is defined twice inside the loop (note that if we

try to move it outside the loop, Z will not get reinitialized before the inner loop).

• 9 can be moved, though. Note that first it gets moved outside the inner loop, but

then is still loop invariant (because Y is only defined outside the loop), so can be

moved outside the outer loop, as well. Code after moving invariant statement:

1. X = 2;
2. Y = 10;
9’. Q = Y - 8;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
7. if (B < Z) goto 12
8. D = Y + Z * -3;
10. Z = Z - Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

6

In the inner loop, Z is an induction variable (because Q is loop invariant), and D is

a mutual induction variable. After performing strength reduction on the inner loop,

we get:

1. X = 2;
2. Y = 10;
9’. Q = Y - 8;
3. if (X < Y) goto 14
4. A = Y * X;
5. B = X * 2 + Y;
6. Z = 10;
8’. D’ = Y + Z * -3;
7. if (B < Z) goto 12
8. D = D’
10. Z = Z - Q;
10’. D’ = D’ + -3 * -Q;
11. goto 7;
12. X = X + 2;
13. goto 3;
14. Y = D;
15. halt;

7

In the outer loop, X is an induction variable, and both A and B are mutual induction

variables. After strength reduction, we get:

1. X = 2;
2. Y = 10;
9’. Q = Y - 8;
4’. A’ = Y * X;
5’. B’ = X * 2 + Y;
3. if (X < Y) goto 14
4. A = A’
5. B = B’
6. Z = 10;
6’. D’ = Y + Z * -3;
7. if (B < Z) goto 12
8. D = D’
10. Z = Z - Q;
10’. D’ = D’ + -3 * -Q;
11. goto 7;
12. X = X + 2;
12’. A’ = A’ + 2 * Y;
12’’ B’ = B’ + 4;
13. goto 3;
14. Y = D; 15. halt

Practice Exercise: Peephole
Optimizations - CSE

8

1. Show the results of performing
CSE on the code shown. Write 3AC
after performing CSE.
(refer to slides 14-20, week10)

2. Suppose A and F are aliased.
How would that change the results
of CSE

9

1. READ(A)
2. READ(B)
3. C = A + B
4. A = A + B
5. B = C * D
6. T1 = C * D
7. T2 = T1 + C
8. F = A + B
9. C = F + B
10. G = A + B
11. T3 = F + B
12. WRITE(T3)

10

Each row shows in parentheses what expressions are
available before the expression is evaluated.

1. READ(A)
2. READ(B)
3. C = A + B
4. A = A + B (A + B)
5. B = C * D (nothing -- writing to A kills A + B)
6. T1 = C * D (C * D)
7. T2 = T1 + C (C * D)
8. F = A + B (T1 + C, C * D)
9. C = F + B (A + B, T1 + C, C * D)
10. G = A + B (A + B, F + B)
11. T3 = F + B (A + B, F + B)
12. WRITE(T3) (A + B, F + B)

11

After performing CSE:

1. READ(A)
2. READ(B)
3. C = A + B
4. A = C (A + B)
5. B = C * D (nothing -- writing to A kills A + B)
6. T1 = B (C * D)
7. T2 = T1 + C (C * D)
8. F = A + B (T1 + C, C * D)
9. C = F + B (A + B, T1 + C, C * D)
10. G = F (A + B, F + B)
11. T3 = C (A + B, F + B)
12. WRITE(T3) (A + B, F + B)

12

If A and F are aliased, writing to F will kill any
expression that uses A (and vice versa), and also,
computing F + B is the same as computing A + B.

1. READ(A)
2. READ(B)
3. C = A + B
4. A = C (A + B, F + B)
5. B = C * D (nothing --writing to A kills A+B and F+B)
6. T1 = B (C * D)
7. T2 = T1 + C (C * D)
8. F = A + B (T1 + C, C * D)
9. C = F + B (T1 + C, C * D -- writing to F kills A+B)
10. G = C (A + B, F + B – we are using C, not F)
11. T3 = C (A + B, F + B)
12. WRITE(T3) (A + B, F + B)

Practice Exercise: Dataflow analysis
(available expressions)

13

1. Show the results of running an
“available expressions” analysis on
the code shown. For each line of
code, show which expressions are
available in that line of code.
(refer to slide 8, week 14. Section 9.2.6 in
Dragon book)

14

1: x = 4;
2: y = 7;
3: if (x > c) goto 12
4: if (y > 3) goto 8
5: c = x + 1;
6: b = a + x;
7: goto 10
8: a = a + x;
9: b = x + 1;
10: y = a + x;
11: goto 3;
12: c = a + x
13: halt

15

1: x = 4;
2: y = 7;
3: if (x > c) goto 12
4: if (y > 3) goto 8
5: c = x + 1;
6: b = a + x;
7: goto 10
8: a = a + x;
9: b = x + 1;
10: y = a + x;
11: goto 3;
12: c = a + x
13: halt

1
2

3

4

5
6
7

8
9

10
11

12
13

B1

B2

B3

B4

B5

B6

B7

Basic Block Pred. Succ. Gen Kill

B1 Entry B2 4,7 x+1, a+x,
x>c, y>3

B2 B6,B1 B3,B7 x>c -

B3 B2 B4,B5 y>3 -

B4 B3 B6 x+1,a+x x>c

B5 B3 B6 x+1 a+x

B6 B4,B5 B2 a+x y>3

B7 B2 Exit a+x x>c

16

17

Basic Block IN OUT

B1 - 4, 7

B2 4, 7 4, 7, x>c

B3 4, 7, x>c 4, 7, x>c, y>3

B4 4, 7, x > c, y > 3 4, 7, y > 3, x + 1, a + x

B5 4, 7, x > c, y>3 4, 7, x > c, x+1, y>3

B6 4, 7, y>3, x+1, a
+ x

4, 7, x + 1, a + x, y>3

B7 4, 7, x > c 4, 7, a+x

Exercise

1. Draw iteration graph for:

2. What are the distance and direction vectors?

3. Can the loops be interchanged?

4. Repeat 1,2,and 3 for the following loop.

18

for(i=0;i<5;i++)
for(j=0;j<5;j++)

a[i][j]=a[i-1][j+2]+a[i][j-2]

for(i=0;i<5;i++)
for(j=0;j<5;j++)

a[i][j]=a[i-1][j-2]

19

j

i

The blue arrows are the
dependences between the write and
the A[i-1][j+2]read, and the red
arrows are the dependences
between the write and the A[i][j-
2]read.

The distance vectors are (1,−2)
and (0,2)

The direction vectors are (+,−) and (0,+) (or, alternately,
(<,>) and (0,<))

The loops cannot be interchanged because the (1,−2) flow
dependence would trans-form into a (−2,1) dependence, which
is not possible (more specifically, we would eliminate the
flow dependence and introduce a (2,−1) anti-dependence).

