
1. A one-pass compiler that produces target code directly from the action routines
mentioned would not work because testcond_if generates the else label and
generates an instruction to jump to the else part identified by the label generated
(also, gen_jump generates jump instruction to out_label). In binary, we would need
the address of the memory location where the first instruction of the else part resides
(first instruction following the if-then-else block resides). This address is obtained
while generating the code for the else part and not when the code for testing the if
condition is generated (generating code following if-then-else part).

You can fix this by backpatching: the next_else_label would be renamed to
last_else_label and would instead contain the address of the instruction requiring
backpatching (initialized by the generate statement in testcond_if and backpatched
in gen_else_label).

The out_label would contain a list of address requiring backpatching. This list is
initialized by generate statement in gen_jump and is backpatched in
gen_out_label

Discussion:
Some of you assume that do is a keyword and hence, the action routines must refer to
$$ instead of do. The language that your compiler is written for and the language that
you are using to implement your compiler may be different! Your compiler’s
implementation is free to choose any variable name in the action routine if that name is
not a reserved word / keyword in the language that you are using to implement your
compiler! Furthermore, assuming that do is a keyword in your compiler’s
implementation language, some of you do not discuss what is the problem in target
code generation using single-pass. So, no points for deviating from the discussion that
the question is trying to elicit. Some of you, who do mention that you can’t do it in a
single-pass, give the reason incorrect: that in case of nested-if statements, the global
variable do will be overwritten and information is lost. The action routines mentioned
create semantic record (do or data object), which gets initialized and updated as you
see different parts of an if_stmt. The implementation would have to use a stack of
semantic records if do is global. Partial points (0.5) if you mention that you can’t do it in
a single-pass but give the incorrect reason.

Some of you wonder if using a top-down or bottom-up parser make a difference. The
parsing technique doesn’t matter. Semantic actions are a notation for inserting arbitrary
code fragments that get associated with grammar rules. You could have code fragment
associated with part of a rule, in which case the semantic actions could get fired for rule
elements that lie in the middle of parse stack while a set of consecutive elements at the
top of the parse stack are used for matching a rule element that is a full production in
the grammar. In case of top-down parser, e.g. a recursive routine corresponding to

if_stmt would first call start_if and initialize do and then call a recursive routine to
b_expr followed by testcond_if(do) and so on...

Marking criteria: negative 0.5 if you just mention backpatching without referring to action

routines.

2.

 main's activation record

 foo’s activation record

 bar's activation record

x (4 bytes)

y (8 bytes)

f (4 bytes)

ret value f (4 bytes)

arg x+y (4 bytes)

Address of call

instruction to bar (8

bytes)

main's frame pointer

(8 bytes)

Saved registers (16

bytes)

g (8 bytes)

ret value g (8 bytes)

Address of

instruction “return g”

(8 bytes)

foo's frame pointer (8

bytes)

arg1 r (4 bytes)

arg2 s (4 bytes)

Saved registers (16

bytes)

h (4 bytes)

q (8 bytes)

Marking criteria: negative 0.25 for an error in each box.

3.
 Live r1 r2 r3 code
1: A = 7
2: B = A + 2
3: C = A + B
4: D = A + B

5: A = C + B

6: B = C + B
7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G
12: WRITE(I)

A
A,B
A,B,C
B,C,D

A,B,C,D

A,B,C,D
A,B,C,D,E

A,B,E,F

E,F,G

H,G

I
{}

A*
A*
A*
D*

A*

A*
A*

A*

G*

G*

I*

B*
B*
B*

B*

B*
E*

F*

F*

H*

C*
C*

C*

C*
C*

mv 7 r1
add r1 2 r2
add r1 r2 r3
add r1 r2 r1

st r1 D
add r3 r2 r1
add r3 r2 r2
st r2 B
ld D r2
add r3 r2 r2
st r2 E
ld D r2
add r3 r2 r2
ld B r3
add r1 r3 r1
ld E r3
add r3 r2 r2
add r2 r1 r1
write r1

R1 is dirty. However, no spill reqd. because

A is not live

Spill r1 because D is used farthest. R1 is

also dirty. Hence, store r1.

Spill r2 because B us used farthest. Load D

into r2. Spill the non-dirty register r2 to

make-way for E.

Choose from r1(A) and r2(E) to spill and

load D. Both A and E are dirty and live. So,

store the result. Free r3 (C not live)

Marking criteria: negative 0.25 for an error in each line. Error includes incorrect register

assignment, not marking dirty, incorrect code.

Some of you assumed distance between statements (rather than memory load orders that we

discussed in class) to spill registers. Using this approach, you could get the following:

 Live r1 r2 r3 code
1: A = 7
2: B = A + 2
3: C = A + B
4: D = A + B

5: A = C + B

6: B = C + B
7: E = C + D

A
A,B
A,B,C
B,C,D

A,B,C,D

A,B,C,D
A,B,C,D,E

A*
A*
A*
D*

A*

A*
E*

B*
B*
B*

B*

B*
B*

C*
C*

C*

C*
C*

mv 7 r1
add r1 2 r2
add r1 r2 r3
add r1 r2 r1

st r1 D
add r3 r2 r1
add r3 r2 r2
st r1 A
ld D r1
add r3 r1 r1

R1 is dirty. However, no spill reqd. because

A is not live

Spill r1 because D is used farthest. R1 is

also dirty. Hence, store r1.

Spill r2 because B us used farthest. Load D

into r2. Spill the non-dirty register r2 to

make-way for E.

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G
12: WRITE(I)

A,B,E,F

E,F,G

H,G

I
{}

F*

F*

H*

I*

B*

G*

G*

st r1 E
ld D r1
add r3 r1 r1
ld A r3
add r3 r2 r2
ld E r3
add r3 r1 r1
add r1 r2 r1
write r1

Choose from r1(A) and r2(E) to spill and

load D. Both A and E are dirty and live. So,

store the result. Free r3 (C not live)

