
 CS406: Compilers
Maximum Points: 8 Written Assignment 2 Due: 23/3/2021, 5PM

Instructions:

The assignment is individual and paper-based. State your assumptions (if any) clearly. You must

turn-in your handwritten assignment sheets to the instructor or TAs before the due date and time.

1. (1 point) consider the following grammar rule for if_stmt with associated action routines.

Assume that a helper function new_label() returns a new label (string type) every time it is
called.

<if_stmt> -> if {do=start_if();} <b_expr> {testcond_if(do);} then
<stmt_list>
 { elsif {gen_jump(do); gen_else_label();} <b_expr> {testcond_if();} then
<stmts> }
 <else_part> endif; {gen_out_label();}

 <else_part> -> else {gen_jump(do); gen_else_label();} <stmt_list>
 <else_part> -> {gen_else_label();}

The semantic record for if statement:

struct if_stmt {
 string out_label, next_else_label;
};

The action routines are below:
//start_if() calls new_label() that creates a label that is the target of all statements out of the
if statement.

if_stmt start_if(void) {
 if_stmt do = new if_stmt();
 do.out_label = new_label();

do.next_else_label = “ “;
return do;

}

//the next_else_label is initialized to blank above because all else labels are created in the

testcond_if routine, which generates a conditional jump over the following then part

void testcond_if(if_stmt& do) {
 check if b_expr.data_object.object_type == BOOLEAN
 do.next_else_label = new_label();
 //JUMP0 is jump if false
 generate(JUMP0, <b_expr>.data_object, do.next_else_label,” “);
}

//gen_jump is the action routine called to generate jump tp the out_label if an else or elsif
part follows a then part.

gen_jump(if_stmt& do){
 generate(JUMP, do.out_label, “ “, “ “);

 CS406: Compilers
Maximum Points: 8 Written Assignment 2 Due: 23/3/2021, 5PM

}

//gen_else_label() labels the beginning of an else or elsif part with the label generated by
testcond_if() as the target of the last conditional jump.

gen_else_label(if_stmt& do){
 generate(LABEL, do.next_else_label, “ “, “ “);
}

//After the entire statement has been processed, gen_out_label() generates the LABEL tuple
for the out_label created by start_if()

gen_out_label(if_stmt& do){
 generate(LABEL, do.out_label, “ “, “ “);
}

If you were implementing a one-pass compiler to generate binary code directly for the if_stmt, why
would the above routines not work? Your explanation/answer must refer to the action routines
above (0.5 points). How would you make it work (0.5 points)?

2. (4 points) Assume that the following program is running on a machine with 4 registers (32-

bit), using callee saves. Assume addresses (i.e., pointers) are 8 bytes, floats are 4 bytes, ints are 4

bytes, and doubles are 8 bytes. Draw the complete stack (i.e., the stack including all active

activation records) for the program right after foo has called bar, and before bar returns.

For each slot in the stack, indicate what is stored there, and how much space that

slot takes up.

 void main() {
int x;
double y;
float f;
... //some computations
f = foo(x + y);
f += bar(x, y);
... //some computations

}

float foo(int a) {

double g;
g = bar(a, a);
return g;

}

double bar(int r, int s) {

float h;
h = 1.0 * (r + s);
if (r == s) {

 CS406: Compilers
Maximum Points: 8 Written Assignment 2 Due: 23/3/2021, 5PM

double q = 2.0;
h = h * q;

}
return h;

}

3. (3 points) Perform bottom-up register allocation on the code for a machine with three registers.

Show what code would be generated for each 3AC instruction. When choosing

registers to allocate, always allocate the lowest-numbered register available. When choosing

registers to spill, choose the non-dirty register that will be used farthest in the future. In case all

registers are dirty, choose the register that will be used farthest in the future. In case of a tie, choose

the lowest-numbered register.

1: A = 7
2: B = A + 2
3: C = A + B
4: D = A + B
5: A = C + B
6: B = C + B
7: E = C + D
8: F = C + D
9: G = A + B
10: H = E + F
11: I = H + G
12: WRITE(I)

