
1

CS406: Compilers
Spring 2020

Week 6: Semantic Actions and Code

Generation

Case study - Semantic Analysis of

Expressions

• Fully parenthesized expression (FPE)

• Expressions (algebraic notation) are the normal way

we are used to seeing them. E.g. 2 + 3

• Fully-parenthesized expressions are simpler versions:

every binary operation is enclosed in parenthesis

• E.g. (2 + (3 * 7))

• So can ignore order-of-operations (PEMDAS rule)

2

• Recursive definition

1. A number (integer in our example)

2. Open parenthesis ‘(‘ followed by

fully-parenthesized expression followed by

an operator (‘+’, ‘-’, ‘*’, ‘/’) followed by

fully-parenthesized expression followed by

closed parenthesis ‘)’

Fully-parenthesized expression

(FPE) – definition

1. E -> INTLITERAL

2. E -> (E op E)

3. op -> ADD | SUB | MUL | DIV

Fully-parenthesized expression –

notation

IsTerm(Scanner* s, TOKEN tok) { return s->GetNextToken() == tok;}

bool E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

bool E2(Scanner* s) { return IsTerm(s, LPAREN) && E(s) && OP(s) && E(s) && IsTerm(s, RPAREN); }

bool OP(Scanner* s) {
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))

return true;
return false;

}

bool E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
if(!E1(s)) {

s->SetCurTokenSequence(prevToken);
return E2(s);

}
return true;

}

Start the parser by invoking E().
Value returned tells if the expression is FPE or not.

A Hand-written Recursive Descent

Parser for FPE

• Can build while parsing a fully parenthesized expression

Via bottom-up building of the tree

• Create subtrees, make those subtrees left- and right-children of

a newly created root.

Modify recursive parser:

1. If token == INTLITERAL, return a pointer to newly created

node containing a number

2. Else

1. store pointers to nodes that are left- and right-

expression subtrees

2. Create a new node with value = ‘OP’

Building Abstract Syntax Trees

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)

ret = CreateTreeNode(nxtToken.val);
return ret;

}

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

TreeNode* E2(Scanner* s) {
TOKEN nxtTok = s->GetNextToken();
if(nxtTok == LPAREN) {

TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.
return root;

}

Building AST Bottom-up for FPE

TreeNode* OP(Scanner* s) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))

ret = CreateTreeNode(tok.val);
return ret;

}

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);
if(!ret) {

s->SetCurTokenSequence(prevToken);
ret = E2(s);

}
return ret;

}

Building AST Bottom-up for FPE…

Start the parser by invoking E().

Value returned is the root of the AST.

• What do we do when we see a INTLITERAL?
• Create a TreeNode
• Initialize it with a value (string equivalent of

INTLITERAL in this case)

• Return a pointer to TreeNode

Identifying Semantic Actions for

FPE Grammar

• What do we do when we see an E (parenthesized
expression)?
• Create an AST node with two children. The node

contains the binary operator OP stored as a string.

Children point to roots of subtrees representing E.

Identifying Semantic Actions for

FPE Grammar

Exercise

• AST is a representation of:

a) Source program

b) Collection of trees (one for arithmetic expr,

declarations etc.)

c) Tree data structure

d) Syntax of the programming language

11

Exercise

1. A symbol table contains names representing

_____ of a program

2. Space required for a symbol table can be

determined at compile time. True/False?

12

Symbol Table

• A symbol table records

– Symbolic names

– Attributes of a name

• E.g. type, scope, accessibility

• Used to manage declarations of symbols and

their correct usage

13

Symbol Table – implementation

strategy

• AST is the input to symbol table construction.

• Walk the tree and process declarations and

usage

• Should accommodate:

– Efficient retrieval of names

– Frequent insertion and deletion of names

14

Symbol Table – implementation

strategy

• AST is the input to symbol table construction

• Walk the tree, process declarations and usage

• Should accommodate:

– Efficient retrieval of names

– Frequent insertion and deletion of names

15

PROGRAM scope_test
BEGIN
//declarations
FUNCTION void f(float, float, float)�
FUNCTION void g(int)�

{
INT w, x;
{

FLOAT x, z;
f(x, w, z);

}�
g(x);�

}

END

16

* Example similar to that in Crafting a Compiler in C – Fischer, and LeBlanc.

Symbol Table – example program

17

* Example similar to that in Crafting a Compiler in C – Fischer, and LeBlanc.

0

1

2

f void (float, float, float) V L H g void (int) V L H

z float V L H w int V L H

x float V L H x int V L H

Hash table of names Hash table of scopes

Symbol Table – an implementation

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Sections 2.7, 2.8

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 7, Chapter 8, Chapter 10

Suggested Reading

