CS406: Compilers

Spring 2020

Week 6: Semantic Actions and Code
Generation



Case study - Semantic Analysis of
Expressions

* Fully parenthesized expression (FPE)

« Expressions (algebraic notation) are the normal way
we are used to seeing them. E.g. 2 + 3

» Fully-parenthesized expressions are simpler versions:
every binary operation is enclosed in parenthesis

Eg.(2+(3*7))

* So can ignore order-of-operations (PEMDAS rule)



Fully-parenthesized expression
(FPE) — definition

* Recursive definition
1. Anumber (integer in our example)
2. Open parenthesis ‘(" followed by
fully-parenthesized expression followed by

’i"*"

an operator (‘+ , 'I') followed by
fuIIy—parentheS|zed expression followed by

closed parenthesis ‘)’



Fully-parenthesized expression —
notation

1. E-> INTLITERAL
2. E->(EopE)
3. op->ADD | SUB | MUL | DIV



A Hand-written Recursive Descent
Parser for FPE

IsTerm(Scanner* s, TOKEN tok) { return s->GetNextToken() == tok;}

bool E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}
bool E2(Scanner* s) { return IsTerm(s, LPAREN) && E(s) && OP(s) && E(s) && IsTerm(s, RPAREN); }

bool OP(Scanner* s) {
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))
return true;
return false;

}

bool E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();

if('E1(s)) {
s->SetCurTokenSequence(prevToken);
return E2(s);

}

return true;

}

Start the parser by invoking E().
Value returned tells if the expression is FPE or not.



Building Abstract Syntax Trees

e Can build while parsing a fully parenthesized expression
Via bottom-up building of the tree

« Create subtrees, make those subtrees left- and right-children of
a newly created root.

Modify recursive parser:

1. If token == INTLITERAL, return a pointer to newly created
node containing a number

2. Else
1. store pointers to nodes that are left- and right-

expression subtrees

2. Create a new node with value = ‘OP’



Building AST Bottom-up for FPE

TreeNode* IsTerm(Scanner* s, TOKEN tok) {
TreeNode* ret = NULL;
TOKEN nxtToken = s->GetNextToken();
if(nxtToken == tok)
ret = CreateTreeNode(nxtToken.val);
return ret;

}

TreeNode* E1(Scanner* s) {
return IsTerm(s, INTLITERAL);

}

TreeNode* E2(Scanner* s) {

TOKEN nxtTok = s->GetNextToken();

if(nxtTok == LPAREN) {
TreeNode* left = E(s);
if(!left) return NULL;
TreeNode* root = OP(s);
if(!root) return NULL;
TreeNode* right = E(s)
if(!right) return NULL;
nxtTok = s->GetNextToken();
if(nxtTok != RPAREN); return NULL;

//set left and right as children of root.

return root;



Building AST Bottom-up for FPE...

TreeNode* OP(Scanner* s) {
TreeNode* ret = NULL;
TOKEN tok = s->GetNextToken();
if((tok == ADD) || (tok == SUB) || (tok == MUL) || (tok == DIV))
ret = CreateTreeNode(tok.val);
return ret;

}

TreeNode* E(Scanner* s) {
TOKEN* prevToken = s->GetCurTokenSequence();
TreeNode* ret = E1(s);
if(!lret) {
s->SetCurTokenSequence(prevToken);
ret = E2(s);
}

return ret;

Start the parser by invoking E().
Value returned is the root of the AST.



ldentifying Semantic Actions for
FPE Grammar

« What do we do when we see a INTLITERAL?
« (Create a TreeNode

« [Initialize it with a value (string equivalent of
INTLITERAL in this case)

« Return a pointer to TreeNode



ldentifying Semantic Actions for
FPE Grammar

« What do we do when we see an E (parenthesized
expression)?
 Create an AST node with two children. The node
contains the binary operator OP stored as a string.
Children point to roots of subtrees representing E.



Exercise

 AST Is a representation of:
a) Source program

b) Collection of trees (one for arithmetic expr,
declarations etc.)

c) Tree data structure
d) Syntax of the programming language

11



Exercise

1. A symbol table contains names representing
of a program

2. Space required for a symbol table can be
determined at compile time. True/False?

12



Symbol Table

A symbol table records
— Symbolic names
— Attributes of a name
E.g. type, scope, accessibility
Used to manage declarations of symbols and
their correct usage

13



Symbol Table — implementation
strategy

AST Is the input to symbol table construction.

Walk the tree and process declarations and
usage

Should accommodate:
— Efficient retrieval of names
— Frequent insertion and deletion of names

14



Symbol Table — implementation
strategy

AST Is the input to symbol table construction
Walk the tree, process declarations and usage

Should accommodate:
— Efficient retrieval of names
— Frequent insertion and deletion of names

15



Symbol Table — example program

PROGRAM scope test

BEGIN

//declarations

FUNCTION void f(float, float, float)X
FUNCTION void g(int)Q

{
INT w, X;
{
FLOAT x, z;
f(x, w, z);
2
g(x) ;B
}
END

* Example similar to that in Crafting a Compiler in C — Fischer, and LeBlanc.

16



Symbol Table — an implementation

Hash table of names Hash table of scopes
f |void (float, float, float)| \/| L| H g void (int) VILLH f&—— | 0
z| float VIL|H w int VIL|H 1
T — / / 2
x| float VI LI H X| int Vi L H
17

* Example similar to that in Crafting a Compiler in C — Fischer, and LeBlanc.



Generating three-address code

® For project, will need to generate three-address code
e opABC/C=AopB
® Can do this directly or after building AST

18



Generating code from an AST

® Do a post-order walk of AST to generate code, pass generated code

up data_object generate_code() {

//pre-processing code

data_object lcode = left.generate_code();
data_object rcode = right.generate_code();
return generate_self(lcode, rcode);

® |mportant things to note:

® A node generates code for its children before generating code
for itself

® Data object can contain code or other information

19



Generating code directly

® Generating code directly using semantic routines is very
similar to generating code from the AST

e Why?

® Because post-order traversal is essentially what happens

when you evaluate semantic actions as you pop them off
stack

® AST nodes are just semantic records

® To generate code directly, your semantic records should
contain structures to hold the code as it’s being built

20



Data objects

® Records various important info

® The temporary storing the result of the current
expression

® Flags describing value in temporary
® Constant, L-value, R-value

® Code for expression

21



L -values vs. R-values

L-values: addresses which can be stored to or loaded from
R-values: data (often loaded from addresses)

® Expressions operate on R-values

Assignment statements:

L-value := R-value

Consider the statementa := a

e the a on LHS refers to the memory location referred to by a
and we store to that location

® the a on RHS refers to data stored in memory location
referred to by a so we will load from that location to produce
the R-value

22



Temporaries

Can be thought of as an unlimited pool of registers (with
memory to be allocated at a later time)

Need to declare them like variables

Name should be something that cannot appear in the
program (e.g., use illegal character as prefix)

Memory must be allocated if address of temporary can be
taken (e.g.a := &b)

Temporaries can hold either L-values or R-values

23



Simple cases

® Generating code for constants/literals

® Store constant in temporary

® Optional: pass up flag specifying this is a constant
® Generating code for identifiers

® Generated code depends on whether identifier is used as L-
value or R-value

® s this an address? Or data’
® One solution: just pass identifier up to next level
® Mark it as an L-value (it's not yet data!)

® Generate code once we see how variable is used

24



Generating code for expressions

® Create a new temporary for result of expression
® Examine data-objects from subtrees
® |f temporaries are L-values, load data from them into new temporaries
® Generate code to perform operation
® In project, no need to explicitly load (variables can be operands)
® |f temporaries are constant, can perform operation immediately
® No need to perform code generation!
® Store result in new temporary
® |[s this an L-value or an R-value?

® Return code for entire expression

25



Generating code for assighment

e Store value of temporary from RHS into address specified by
temporary from LHS

® Why does this work?
® Because temporary for LHS holds an address

e |f LHS is an identifier, we just stored the address of it in
temporary

® |f LHS is complex expression
int *p = &x
*p + 1) = 7;

it still holds an address, even though the address was
computed by an expression

26



Pointer operations

So what do pointer operations do?
Mess with L and R values

& (address of operator): take L-value, and treat it as an R-
value (without loading from it)

x=&a+ |;

* (dereference operator): take R-value, and treat it as an L-
value (an address)

*x =7;

27



If statements

1f <bool_expr_1>
<stmt_list_1>
else
<stmt_list_2>
endif

28



Generating code for ifs

<code for bool_expr_1>

1f <bool_expr_1> j<lop> ELSE_1
<stmt_list_1> <code for stmt_list_1>
else jmp OUT_1
<stmt_list_2> ELSE_1:
endif <code for stmt_list_2>
OUT_1:

29



Notes on code generation

The <op> in j<!lop> is dependent on the type of
comparison you are doing in <bool_ expr>

When you generate JUMP instructions, you should also
generate the appropriate LABELs

Remember: labels have to be unique!

30



If statements

cond_expr 4 on block

else_block

31



Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Technigques, and Tools, 2/E, AddisonWesley
2007

— Sections 2.7, 2.8

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 7, Chapter 8, Chapter 10

32



