CS406: Compilers

Spring 2020

Week 5: Parsers, AST, and Semantic
Routines

Recap

What is parsing

® Parsing is recognizing members in a language specified/
defined/generated by a grammar

® When a construct (corresponding to a production in a
grammar) is recognized, a typical parser will take some
action

® |n a compiler, this action generates an intermediate
representation of the program construct

® |n an interpreter, this action might be to perform the
action specified by the construct. Thus, if a+b is
recognized, the value of a and b would be added and

placed in a temporary variable

Top-down Parsing — predictive
parsers

® |dea: we know sentence has to start with initial symbol

® Build up partial derivations by predicting what rules are used
to expand non-terminals

® Often called predictive parsers

® |f partial derivation has terminal characters, match them
from the input stream

Suggested reading: https://en.wikipedia.org/wiki/LL_parser

Top-down Parsing — contd..

« Also called recursive-descent parsing

 Equivalent to finding the left-derivation for an
Input string
— Recall: expand the leftmost non-terminal in a parse
tree

— Expand the parse tree in pre-order i.e. identify parent
nodes before children

Top-down Parsing

1) S -> F (1) |la |+ |$
2) S -> (S + F)

3) F -> a S (2 |- |1 |- |-
string: (a+a) E |- |- [3 |- |-
string’. (a+a)$ Assume that the table is given.

« Table-driven (Parse Table) approach doesn’t require
backtracking

But how do we construct such a table?

First and follow sets

® First(x): the set of terminals (and/or
A) that begin all strings that can be
derived from X

® First(A) = {x,y, A}
® First(xaA) = {x}
® First (AB) = {x,y, b}

® Follow(A): the set of terminals (and/

or $,but no As) that can appear
immediately after A in some partial
derivation

¢ Follow(A) = {b}

S—ABS$
A—xaA
A—yaA
A— A
B—b

First and follow sets

o First()={aeVe|ax="af}u{A]|ifx="A}

QPR W

Follow(A) ={aeV:|S=".Aa.}u{$|ifS=".A%}

start symbol

a terminal symbol

a non-terminal symbol

a string composed of terminals and

non-terminals (typically, is the

RHS of a production =: derivedin | step

=" derived in 0 or more steps

=7 derived in | or more steps

Towards parser generators

e Key problem: as we read the source program, we need to
decide what productions to use

e Step |:find the tokens that can tell which production P (of
the form A = X, X3 ... Xn) applies

Predict(P) =
First(Xq...X,,) it A& First(Xq...X,,)
(First(X1...X,,) — A\) UFollow(A) otherwise

® |f next token is in Predict(P), then we should choose this
production

Computing Parse-Table

1) S -> ABc$ X |y |a |b|c |$
2) A -> xaA
3) A -> yaA > |11 1
4) A -> c A |2 |3 4
5) B ->b
6) B -> A B ° |6
first (S) = {x, y, c} follow (S) = {} P(1) = {x,y,c}
first (A) = {x, y, c} follow (A) = {b, c} P(2) = {x}
first(B) = {b, A} follow(B) = {c} P(3) = {y}
P(4) = {c}
P(5) = {b}
P(6) = {c}

10

Parsing using stack-based model
(non-recursive) of a predictive parser

11

Computing Parse-Table

string: xacc$

Stack* Remaining Input Action

S xacch Predict(1) S->ABc%
ABc$ xacch Predict(2) A->xaA
XaABc$ xacc$ match(x)

aABc$ acc$ match(a)

ABc$ cch Predict(4) A->c
cBc$ cch match(c)

Bc$ c$ Predict(6) B->A

c$ c$ match(c)

c$ c$ Done!

* Stack top is on the left-side (first character) of the column 12

ldentifying LL(1) Grammar

 What we saw was an example of LL(1) Parser
* Not all Grammars are LL(1)

A Grammar is LL(1) iff for a production A -> a | 3, where
a and (3 are distinct:

1. For no terminal a do both a and 3 derive strings beginning with
a
2. At most one of a and 3 can derive an empty string

3. If § 3 ¢, then a does not derive any string beginning with a

terminal In Follow(A). If x = ¢, then does not derive any
string beginning with a terminal in Follow(A)

13

Left recursion

® |[eft recursion is a problem for LL(1) parsers
® |[HSisalso the first symbol of the RHS
¢ Consider:
E-E+T

® What would happen with the stack-based algorithm?

14

Example (Left Factoring)

Consider

<stmt> — if <expr> then <stmt list> endif

<stmt> — if <expr> then <stmt list> else <stmt list> endif
This is not LL(1) (why?)

We can turn this in to

<stmt> — if <expr> then <stmt list> <if suffix>

<if suffix> — endif

<if suffix> — else <stmt list> endif

15

Eliminating Left Recursion

A->Aa]p

U

A->[BA
A->aA | A

16

LL(K) parsers

® (Can look ahead more than one symbol at a time

® k-symbol lookahead requires extending first and follow
sets

® 2-symbol lookahead can distinguish between more rules:

A — ax | ay
® More lookahead leads to more powerful parsers

® \What are the downsides?

17

Are all grammars LL(k)?

® No! Consider the following grammar:

S —E
E - (E+E)
E — (E-E)
E —x

® When parsing E, how do we know whether to use rule 2 or
3?

® Potentially unbounded number of characters before the
distinguishing '+’ or =" is found

® No amount of lookahead will help!

18

In real languages!’

Consider the if-then-else problem

1f X then y else z

Problem: else is optional

1f a then 1f b then c else d

® Which if does the else belong to!?

This is analogous to a “bracket language™: [']/ (i = j)

OO0 vw

L

> >

SC

[[] can be parsed: SSAC or SSCA
(it's ambiguous!)

19

Solving the if-then-else problem

® The ambiguity exists at the language level. To fix, we need to
define the semantics properly

®] matches nearest unmatched [”
® This is the rule C uses for if-then-else

® What if we try this!?

S =[S

S — Sl This grammar is still not LL(I)
SI = [SI] (or LL(k) for any k!)

SI = A

20

Two possible fixes

e |[f there is an ambiguity, prioritize one production over

another

® c.g.,if Cis on the stack, always match “]” before matching

HAH

® Another option: change the language!

® eg,all if-statements need to be closed with an endif

m m v W

— ifSE
— other

— else S endif
— endif

21

Parsing if-then-else

® What if we don’t want to change the language’
® C does not require { } to delimit single-statement blocks

® TJo parse if-then-else, we need to be able to look ahead at the
entire rhs of a production before deciding which production
to use

® |n other words, we need to determine how many “]” to
match before we start matching “["’s

® [R parsers can do this!

22

LR Parsers

® Parser which does a Left-to-right, Right-most derivation

Rather than parse top-down, like LL parsers do, parse
bottom-up, starting from leaves

Example:
E ->E + T T
T->T*F F

|
|
F -> (E) | id

String: 1d*id

Demo

23

LR Parsers

 Basic idea: put tokens on a stack until an entire production
Is found

- shift tokens onto the stack. At any step, keep the set of
productions that could generate the read-in token
- reduce the RHS of recognized productions to the
corresponding non-terminal on the LHS of the production.
Replace the RHS tokens on the stack with the LHS non-

P ES

® Recognizing the endpoint of a production
® Finding the length of a production (RHS)

¢ Finding the corresponding nonterminal (the LHS of the
production)

24

Data structures

® At each state, given the next token,
® A goto table defines the successor state
® An action table defines whether to
® shift — put the next state and token on the stack
® reduce —an RHS is found; process the production

® ierminate — parsing is complete

25

Simple example

|. P—S
2. S—x:S
3. S—e
Symbol
X : e Action
0 I 3 Shift
I 2 Shift
2 I 3 Shift
State
3 Reduce 3
4 Reduce 2
5 Accept

26

Parsing using an LR(0) parser

® Basic idea: parser keeps track, simultaneously, of all possible
productions that could be matched given what it’s seen so far.
When it sees a full production, match it.

e Maintain a parse stack that tells you what state you're in
e Startin state 0
® |n each state, look up in action table whether to:

® shift: consume a token off the input; look for next state in goto
table; push next state onto stack

® reduce: match a production; pop off as many symbols from state
stack as seen in production; look up where to go according to
non-terminal we just matched; push next state onto stack

® gccept: terminate parse

27

Example

® Parse“x;:x:e”

Step Parse Stack Remaining Input Parser Action
I 0 X ;X ;e Shift |
2 01 ;X ;e Shift 2
3 012 X ;e Shift |
4 0121 ;e Shift 2
5 01212 e Shift 3
6 012123 Reduce 3 (goto 4)
7 012124 Reduce 2 (goto 4)
8 0124 Reduce 2 (goto 5)
9 05 Accept

LR(k) parsers

® | R(0) parsers
® No lookahead

® Predict which action to take by looking only at the
symbols currently on the stack

® [R(k) parsers
® (Can look ahead k symbols
® Most powerful class of deterministic bottom-up parsers

® | R(Il) and variants are the most common parsers

29

Top-down vs. Bottom-up parsers

® Top-down parsers expand the parse tree in pre-order
® |dentify parent nodes before the children

® Bottom-up parsers expand the parse tree in post-order
® |dentify children before the parents

® Notation:
® |L(l):Top-down derivation with | symbol lookahead
® || (k):Top-down derivation with k symbols lookahead

® |R(I): Bottom-up derivation with | symbol lookahead

30

Abstract Syntax Trees

Parsing recognizes a production from the
grammar based on a sequence of tokens
received from Lexer

Rest of the compiler needs more info: a
structural representation of the program
construct

« Abstract Syntax Tree or AST

31

Abstract Syntax Trees

« Are like parse trees but ignore certain detalls

« Example:
E->E+E|(E)]|Int
String: 1 + (2 + 3)

Demo

32

Semantic Actions for Expressions

33

Review

Scanners
Detect the presence of illegal tokens

Parsers
Detect an ill-formed program

Semantic actions

Last phase in the front-end of a compiler
Detect all other errors

What are these kind of errors?

34

What we cannot express using
CFGs

 Examples:
« |dentifiers declared before their use (scope)
« Types in an expression must be consistent

 Number of formal and actual parameters of a
function must match

 Reserved keywords cannot be used as identifiers
« etc.

Depends on the language..

35

Semantic Records

Data structures produced by semantic actions

Associated with both non-terminals (code structures) and
terminals (tokens/symbols)

Build up semantic records by performing a bottom-up walk
of the abstract syntax tree

36

Scope

Scope of an identifier is the part of the program
where the identifier is accessible

Multiple scopes for same identifier name
possible

Static vs. Dynamic scope

exercise: what are the different scopes in Micro?

37

Types

Static vs. Dynamic
Type checking
Type inference

38

Referencing identifiers

® What do we return when we see an identifier?

Check if it ilsnsymbol table
A
Create new AST node with pointer to symbol table

entry

Note: may want to directly store type information in AST
(or could look up in symbol table each time)

39

Expressions Example

X +y +5

40

Expressions Example

X +y +5

41

Expressions Example

X +y + 5

identifier “y”

42

Expressions Example

X +y +5

binary _op
operator: +

identifier “y”

43

Expressions Example

X +y +5

binary _op
operator: +

identifier “y”

44

Expressions Example

X +y + 5

binary_op

operator: +

binary _op
operator: +
identifier “y”

45

Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley
2007

— Chapter 4 (4.5, 4.6 (introduction)). Chapter 5 (5.3), Chapter 6 (6.1)

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 8 (Sections 8.1 to 8.3), Chapter 9 (9.1, 9.2.1 — 9.2.3)

46

