
1

CS406: Compilers
Spring 2020

Week 5: Parsers, AST, and Semantic

Routines

2

Recap

3

4
Suggested reading: https://en.wikipedia.org/wiki/LL_parser

Top-down Parsing – predictive

parsers

5

Top-down Parsing – contd..

• Also called recursive-descent parsing

• Equivalent to finding the left-derivation for an

input string

– Recall: expand the leftmost non-terminal in a parse

tree

– Expand the parse tree in pre-order i.e. identify parent

nodes before children

6

Top-down Parsing

1) S -> F
2) S -> (S + F)
3) F -> a

• Table-driven (Parse Table) approach doesn’t require

backtracking

string: (a+a)

() a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?

7

8

9

10

Computing Parse-Table

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

x y a b c $

S 1 1 1

A 2 3 4

B 5 6

first (S) = {x, y, c}
first (A) = {x, y, c}
first(B) = {b, λ}

follow (S) = {}
follow (A) = {b, c}
follow(B) = {c}

P(1) = {x,y,c}
P(2) = {x}
P(3) = {y}
P(4) = {c}
P(5) = {b}
P(6) = {c}

11

Parsing using stack-based model

(non-recursive) of a predictive parser

12

Computing Parse-Table

string: xacc$

S xacc$ Predict(1) S->ABc$
ABc$ xacc$ Predict(2) A->xaA
xaABc$ xacc$ match(x)
aABc$ acc$ match(a)
ABc$ cc$ Predict(4) A->c
cBc$ cc$ match(c)
Bc$ c$ Predict(6) B->λ
c$ c$ match(c)
c$ c$ Done!

Stack* Remaining Input Action

* Stack top is on the left-side (first character) of the column

13

Identifying LL(1) Grammar

• What we saw was an example of LL(1) Parser

• Not all Grammars are LL(1)

A Grammar is LL(1) iff for a production A -> α | β, where

α and β are distinct:

1. For no terminal a do both α and β derive strings beginning with

a
2. At most one of α and β can derive an empty string

3. If then α does not derive any string beginning with a

terminal in Follow(A). If then does not derive any

string beginning with a terminal in Follow(A)

14

15

Example (Left Factoring)

16

A -> A α | β

A -> βA’

A’ -> αA’ | λ

Eliminating Left Recursion

17

18

19

20

21

22

23

Example:

E -> E + T | T
T -> T * F | F
F -> (E) | id

String: id*id

Demo

24

• Basic idea: put tokens on a stack until an entire production

is found

- shift tokens onto the stack. At any step, keep the set of

productions that could generate the read-in token

- reduce the RHS of recognized productions to the

corresponding non-terminal on the LHS of the production.

Replace the RHS tokens on the stack with the LHS non-

terminal.• Issues:

25

26

27

28

29

30

31

Abstract Syntax Trees

• Parsing recognizes a production from the

grammar based on a sequence of tokens

received from Lexer

• Rest of the compiler needs more info: a

structural representation of the program

construct

• Abstract Syntax Tree or AST

32

Abstract Syntax Trees

• Are like parse trees but ignore certain details

• Example:

E -> E + E | (E) | int

String: 1 + (2 + 3)

Demo

33

Semantic Actions for Expressions

34

Review

• Scanners

• Detect the presence of illegal tokens

• Parsers

• Detect an ill-formed program

• Semantic actions

• Last phase in the front-end of a compiler

• Detect all other errors

What are these kind of errors?

35

What we cannot express using

CFGs

• Examples:

• Identifiers declared before their use (scope)

• Types in an expression must be consistent

• Number of formal and actual parameters of a

function must match

• Reserved keywords cannot be used as identifiers

• etc.

Depends on the language..

36

abstract syntax tree

37

Scope

• Scope of an identifier is the part of the program

where the identifier is accessible

• Multiple scopes for same identifier name

possible

• Static vs. Dynamic scope

exercise: what are the different scopes in Micro?

38

Types

• Static vs. Dynamic

• Type checking

• Type inference

39

in

Λ

40

Expressions Example

x + y + 5

41

Expressions Example

x + y + 5

identifier “x”

42

Expressions Example

x + y + 5

identifier “x” identifier “y”

43

Expressions Example

x + y + 5

identifier “x” identifier “y”

binary_op

operator: +

44

Expressions Example

x + y + 5

identifier “x” identifier “y”

binary_op

operator: +
literal “5”

45

Expressions Example

x + y + 5

identifier “x” identifier “y”

binary_op

operator: +
literal “5”

binary_op

operator: +

46

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 4 (4.5, 4.6 (introduction)). Chapter 5 (5.3), Chapter 6 (6.1)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 8 (Sections 8.1 to 8.3), Chapter 9 (9.1, 9.2.1 – 9.2.3)

Suggested Reading

