CS406: Compilers

Spring 2020

Week 5: Parsers, AST, and Semantic
Routines



Recap



What is parsing

® Parsing is recognizing members in a language specified/
defined/generated by a grammar

® When a construct (corresponding to a production in a
grammar) is recognized, a typical parser will take some
action

® |n a compiler, this action generates an intermediate
representation of the program construct

® |n an interpreter, this action might be to perform the
action specified by the construct. Thus, if a+b is
recognized, the value of a and b would be added and

placed in a temporary variable



Top-down Parsing — predictive
parsers

® |dea: we know sentence has to start with initial symbol

® Build up partial derivations by predicting what rules are used
to expand non-terminals

® Often called predictive parsers

® |f partial derivation has terminal characters, match them
from the input stream

Suggested reading: https://en.wikipedia.org/wiki/LL_parser



Top-down Parsing — contd..

« Also called recursive-descent parsing

 Equivalent to finding the left-derivation for an
Input string
— Recall: expand the leftmost non-terminal in a parse
tree

— Expand the parse tree in pre-order i.e. identify parent
nodes before children



Top-down Parsing

1) S -> F ( 1) |la |+ |$
2) S -> (S + F)

3) F -> a S (2 |- |1 |- |-
string: (a+a) E |- |- [3 |- |-
string’. (a+a)$ Assume that the table is given.

« Table-driven (Parse Table) approach doesn’t require
backtracking

But how do we construct such a table?



First and follow sets

® First(x): the set of terminals (and/or
A) that begin all strings that can be
derived from X

® First(A) = {x,y, A}
® First(xaA) = {x}
® First (AB) = {x,y, b}

® Follow(A): the set of terminals (and/

or $,but no As) that can appear
immediately after A in some partial
derivation

¢ Follow(A) = {b}

S—ABS$
A—xaA
A—yaA
A— A
B—b



First and follow sets

o First()={aeVe|ax="af}u{A]|ifx="A}

QPR W

Follow(A) ={aeV:|S=".Aa.}u{$|ifS=".A%}

start symbol

a terminal symbol

a non-terminal symbol

a string composed of terminals and

non-terminals (typically,  is the

RHS of a production =:  derivedin | step

=" derived in 0 or more steps

=7 derived in | or more steps



Towards parser generators

e Key problem: as we read the source program, we need to
decide what productions to use

e Step |:find the tokens that can tell which production P (of
the form A = X, X3 ... Xn) applies

Predict(P) =
First(Xq...X,,) it A& First(Xq...X,,)
(First(X1...X,,) — A\) UFollow(A) otherwise

® |f next token is in Predict(P), then we should choose this
production



Computing Parse-Table

1) S -> ABc$ X |y |a |b|c |$
2) A -> xaA
3) A -> yaA > |11 1
4) A -> c A |2 |3 4
5) B ->b
6) B -> A B ° |6
first (S) = {x, y, c} follow (S) = {} P(1) = {x,y,c}
first (A) = {x, y, c} follow (A) = {b, c} P(2) = {x}
first(B) = {b, A} follow(B) = {c} P(3) = {y}
P(4) = {c}
P(5) = {b}
P(6) = {c}
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Parsing using stack-based model
(non-recursive) of a predictive parser
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Computing Parse-Table

string: xacc$

Stack* Remaining Input Action

S xacch Predict(1) S->ABc%
ABc$ xacch Predict(2) A->xaA
XaABc$ xacc$ match(x)

aABc$ acc$ match(a)

ABc$ cch Predict(4) A->c
cBc$ cch match(c)

Bc$ c$ Predict(6) B->A

c$ c$ match(c)

c$ c$ Done!

* Stack top is on the left-side (first character) of the column 12



ldentifying LL(1) Grammar

 What we saw was an example of LL(1) Parser
* Not all Grammars are LL(1)

A Grammar is LL(1) iff for a production A -> a | 3, where
a and (3 are distinct:

1. For no terminal a do both a and 3 derive strings beginning with
a
2. At most one of a and 3 can derive an empty string

3. If § 3 ¢, then a does not derive any string beginning with a

terminal In Follow(A). If x = ¢, then does not derive any
string beginning with a terminal in Follow(A)
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Left recursion

® |[eft recursion is a problem for LL(1) parsers
® |[HSisalso the first symbol of the RHS
¢ Consider:
E-E+T

® What would happen with the stack-based algorithm?
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Example (Left Factoring)

Consider

<stmt> — if <expr> then <stmt list> endif

<stmt> — if <expr> then <stmt list> else <stmt list> endif
This is not LL(1) (why?)

We can turn this in to

<stmt> — if <expr> then <stmt list> <if suffix>

<if suffix> — endif

<if suffix> — else <stmt list> endif
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Eliminating Left Recursion

A->Aa]p

U

A->[BA
A->aA | A

16



LL(K) parsers

® (Can look ahead more than one symbol at a time

® k-symbol lookahead requires extending first and follow
sets

® 2-symbol lookahead can distinguish between more rules:

A — ax | ay
® More lookahead leads to more powerful parsers

® \What are the downsides?
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Are all grammars LL(k)?

® No! Consider the following grammar:

S —E
E - (E+E)
E — (E-E)
E —x

® When parsing E, how do we know whether to use rule 2 or
3?

® Potentially unbounded number of characters before the
distinguishing '+’ or =" is found

® No amount of lookahead will help!
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In real languages!’

Consider the if-then-else problem

1f X then y else z

Problem: else is optional

1f a then 1f b then c else d

® Which if does the else belong to!?

This is analogous to a “bracket language™: [' ]/ (i = j)

OO0 vw

L

> >

SC

[ [] can be parsed: SSAC or SSCA
(it's ambiguous!)

19



Solving the if-then-else problem

® The ambiguity exists at the language level. To fix, we need to
define the semantics properly

® ] matches nearest unmatched [”
® This is the rule C uses for if-then-else

® What if we try this!?

S =[S

S — Sl This grammar is still not LL(I)
SI = [SI] (or LL(k) for any k!)

SI = A
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Two possible fixes

e |[f there is an ambiguity, prioritize one production over

another

® c.g.,if Cis on the stack, always match “]” before matching

HAH

® Another option: change the language!

® eg,all if-statements need to be closed with an endif

m m v W

— ifSE
— other

— else S endif
— endif
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Parsing if-then-else

® What if we don’t want to change the language’
® C does not require { } to delimit single-statement blocks

® TJo parse if-then-else, we need to be able to look ahead at the
entire rhs of a production before deciding which production
to use

® |n other words, we need to determine how many “]” to
match before we start matching “["’s

® [R parsers can do this!
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LR Parsers

® Parser which does a Left-to-right, Right-most derivation

Rather than parse top-down, like LL parsers do, parse
bottom-up, starting from leaves

Example:
E ->E + T T
T->T*F F

|
|
F -> (E) | id

String: 1d*id

Demo
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LR Parsers

 Basic idea: put tokens on a stack until an entire production
Is found

- shift tokens onto the stack. At any step, keep the set of
productions that could generate the read-in token
- reduce the RHS of recognized productions to the
corresponding non-terminal on the LHS of the production.
Replace the RHS tokens on the stack with the LHS non-

P ES

® Recognizing the endpoint of a production
® Finding the length of a production (RHS)

¢ Finding the corresponding nonterminal (the LHS of the
production)
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Data structures

® At each state, given the next token,
® A goto table defines the successor state
® An action table defines whether to
® shift — put the next state and token on the stack
® reduce —an RHS is found; process the production

® ierminate — parsing is complete
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Simple example

|. P—S
2. S—x:S
3. S—e
Symbol
X : e Action
0 I 3 Shift
I 2 Shift
2 I 3 Shift
State
3 Reduce 3
4 Reduce 2
5 Accept
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Parsing using an LR(0) parser

® Basic idea: parser keeps track, simultaneously, of all possible
productions that could be matched given what it’s seen so far.
When it sees a full production, match it.

e Maintain a parse stack that tells you what state you're in
e Startin state 0
® |n each state, look up in action table whether to:

® shift: consume a token off the input; look for next state in goto
table; push next state onto stack

® reduce: match a production; pop off as many symbols from state
stack as seen in production; look up where to go according to
non-terminal we just matched; push next state onto stack

® gccept: terminate parse
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Example

® Parse“x;:x:e”

Step Parse Stack Remaining Input Parser Action
I 0 X ;X ;e Shift |
2 01 ;X ;e Shift 2
3 012 X ;e Shift |
4 0121 ;e Shift 2
5 01212 e Shift 3
6 012123 Reduce 3 (goto 4)
7 012124 Reduce 2 (goto 4)
8 0124 Reduce 2 (goto 5)
9 05 Accept




LR(k) parsers

® | R(0) parsers
® No lookahead

® Predict which action to take by looking only at the
symbols currently on the stack

® [R(k) parsers
® (Can look ahead k symbols
® Most powerful class of deterministic bottom-up parsers

® | R(Il) and variants are the most common parsers
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Top-down vs. Bottom-up parsers

® Top-down parsers expand the parse tree in pre-order
® |dentify parent nodes before the children

® Bottom-up parsers expand the parse tree in post-order
® |dentify children before the parents

® Notation:
® |L(l):Top-down derivation with | symbol lookahead
® || (k):Top-down derivation with k symbols lookahead

® |R(I): Bottom-up derivation with | symbol lookahead
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Abstract Syntax Trees

Parsing recognizes a production from the
grammar based on a sequence of tokens
received from Lexer

Rest of the compiler needs more info: a
structural representation of the program
construct

« Abstract Syntax Tree or AST
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Abstract Syntax Trees

« Are like parse trees but ignore certain detalls

« Example:
E->E+E|(E)]|Int
String: 1 + (2 + 3)

Demo
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Semantic Actions for Expressions

33



Review

Scanners
Detect the presence of illegal tokens

Parsers
Detect an ill-formed program

Semantic actions

Last phase in the front-end of a compiler
Detect all other errors

What are these kind of errors?
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What we cannot express using
CFGs

 Examples:
« |dentifiers declared before their use (scope)
« Types in an expression must be consistent

 Number of formal and actual parameters of a
function must match

 Reserved keywords cannot be used as identifiers
« etc.

Depends on the language..
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Semantic Records

Data structures produced by semantic actions

Associated with both non-terminals (code structures) and
terminals (tokens/symbols)

Build up semantic records by performing a bottom-up walk
of the abstract syntax tree
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Scope

Scope of an identifier is the part of the program
where the identifier is accessible

Multiple scopes for same identifier name
possible

Static vs. Dynamic scope

exercise: what are the different scopes in Micro?
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Types

Static vs. Dynamic
Type checking
Type inference
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Referencing identifiers

® What do we return when we see an identifier?

Check if it ilsnsymbol table
A
Create new AST node with pointer to symbol table

entry

Note: may want to directly store type information in AST
(or could look up in symbol table each time)
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Expressions Example

X +y +5
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Expressions Example

X +y +5
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Expressions Example

X +y + 5

identifier “y”
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Expressions Example

X +y +5

binary _op
operator: +

identifier “y”
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Expressions Example

X +y +5

binary _op
operator: +

identifier “y”
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Expressions Example

X +y + 5

binary_op

operator: +

binary _op
operator: +
identifier “y”
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Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley
2007

— Chapter 4 (4.5, 4.6 (introduction)). Chapter 5 (5.3), Chapter 6 (6.1)

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 8 (Sections 8.1 to 8.3), Chapter 9 (9.1, 9.2.1 — 9.2.3)
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