CS406: Compilers

Spring 2020

Week 4: Parsers

Parsers - Overview

« Also called syntax analyzers

« Determine two things:
1. If a program is valid syntactically
- Is an English sentence grammatically correct?
2. Structure of programming language constructs

- E.g. the sequence 1F, ID(a), OP(<), ID(b), {, ID(a),
ASSIGN, LIT(5), }, ;, } refersto if-statement ?

- Diagramming English sentences

Parsers - Overview

* |nput: stream of tokens

 Output: Parse tree
— sometimes implicit

Stream of tokens: ‘ l

If-stmt

expr stmt-list }

{
Parse tree: / | \ |

expr assign-stmt

/|\ N

Parsers — what do we need to
know?

1. How do we define language constructs?

— Context-free grammars

2. How do we determine: 1) valid strings in the
language? 2) structure of program?

— LL Parsers, LR Parsers

3. How do we write Parsers?

— E.g. use a parser generator tool such as Bison

Languages

A language is (possibly infinite) set of strings

Reqgular expressions describe regular languages
weakness: can’t describe a string of the form:

{ () | i>»=1}

Parenthesized expressions: ((C int x5)))

Trivia

Reqgular expressions can describe strings:
{ mod k | k = # states in FA}

“accept all strings having odd number of 1s”

Context Free Grammar (CFG)

Natural notation for describing recursive structure

definitions. Hence, suitable for specifying

Ianguage constructs.

Consist of:

A set of Terminals
A set of Non-terminals
A Start Symbol

A set of Productions

Context Free Grammar (CFG)

Terminology:

Terminals =T

Non-terminals — N

Start Symbol — SeN

Productions — P (also called rules sometimes)

X — Y,Y,Y5..Y, | Xen, v;e N U T U e/A

Grammar G

(T, N, S, P)

E.g. G = ({a,b}, {S, A, B}, S, {S—AB, A—=Aa
A—a, B—Bb, B—=b})

G is context free. Why?

Terminology

® Strings are composed of symbols

AAaaBbbAaisastring

We will use Greek letters to represent strings composed of
both terminals and non-terminals

® [(G) is the language produced by the grammar G

All strings consisting of only terminals that can be produced
by G

In our example, L(G) = a+b+

The language of a context-free grammar is a context-free
language

All regular languages are context-free, but not vice versa

String Derivations

« How do we apply the grammar rules repeatedly
to determine the validity of a string? (i.e. string belongs

to the language specified by the grammar)

1. Always start with the Start Symbol

2. Replace any Non-terminal X in the string by the right-
hand side of the production

3. Repeat Step 2 until there are no more non-terminals

10

Simple grammar

Start symbol S AB

Al A a |€ Terminals
Non-terminals A 2 /
B Blb

B—b
\Production

Backus Naur Form (BNF)

11

Generating strings

S—+AB

® Given a start rule, productions tell us
A—Aa how to rewrite a non-terminal into a
different set of symbols

A—a | |
e Some productions may rewrite to A.

That just removes the non-terminal

To derive the string“aa b b b” we can do the following rewrites:

S=AB=AaB=aaB=aa =

d ad = aa

12

Exercise

Which of the below strings are accepted by the
grammar:

A — aAa

A —bBb
A =\
B —CA
B —A

1. abcba
2. abcbca
3. abba
4. abca

13

Programming language syntax

® Programming language syntax is defined with CFGs
® (Constructs in language become non-terminals

® May use auxiliary non-terminals to make it easier to
define constructs

if stmt —if (cond expr) then statement else part

else_part — else statement

else_part — A

® Tokens in language become terminals

14

CFG Contd..

Is it enough if parsers answer “yes” or “no” to check if a
string belongs to context-free language?

— Also need a parse tree

What if the answer is a “no”?

— Handle errors

How do we implement CFGs?

— E.g. Bison

15

Parse trees

® Tree which shows how a
string was produced by a
language A B

Interior nodes of tree: non-

terminals
a| |B

® Children: the terminals
and non-terminals

generated by applying a
production rule 2 | E b

® | eaf nodes: terminals

16

Parse Trees and String Derivations

« Recall: sequence of rules applied to produce a
string Is a derivation

« A derivation defines a parse tree

— A parse tree may have many derivations

17

Leftmost derivation

® Rewriting of a given string starts with the leftmost symbol

® Exercise: do a leftmost derivation of the input program

FV +V)

using the following grammar:

E — Prefix (E)

E — VTail

Prefix — F

Prefix — A

Tail — +E

Tail — A

® What does the parse tree look like?

18

Rightmost derivation

® Rewrite using the rightmost non-terminal, instead of the left

® What is the rightmost derivation of this string?

F(V +V)
E — Prefix (E)
E — VTalil
Prefix — F
Prefix — A
Talil — +E
Tail — A

19

Ambiguity

 Grammar that produces more than one parse

tree for some string
E.g. E->E+E | E*E| id
String: id+id*id

CSEeE E->E*E

E'>.; c E->E+E*E /////7h\\\\
->10+ E->id+E*E

E->id+E*E E E

E
+ E s E
ot | N s N]
E * E E T E
| | | |

id id id id

E
*

20

Ambiguity — what to do?

* |Ignore it

— Give hints to other components of the compiler
on how to resolve it

 Fixit
— Manually

— May make the grammar complicated and
difficult to maintain

21

e E

E->E+E
E->id+E
E->id+E+E
E->id+1id+E
E->id+id+1id

Produces:
id+(id+id)

E

id

Ambiguity — ignore

-> E + E | id

E

N E
E * E
| |

id id

E->E+E+E //////7\\\\\

E->id+E+E
E->id+id+E E E
E->id+id+id /////7“\\\\ ‘
id
Produces: E + E
(id+id)+id ‘ ‘
id id

E->E+E E
+

« Associativity declaration in Bison:

hleft +

Picks the parse tree on the right

22

Ambiguity - ignore
e E->E+E | E*E| id

M E->E*E
ot E->E+E*E /////7A\\\\
E->1d+E

E
E->id+E*E
E->id+E*E g+ g e E E
-5 e ko
E->1d+id*E | E->id+id*id /////7A\\\\ |
E->id+id*id i id
E * E T ¥ T

i id id id

E
*

sleft +
%left *
Tells that * has higher precedence over + and both are left

associative. So we get the tree on left. s

Ambiguity — fixing

RewriteE -> E+ E | E* E | id as
E ->E> +E| FE°
E* -> id * E> | id | (E) * E° | (E)
E
E->E’+E
E->id+E
E->id+E’ E’ + E

E->id+id*E’ l
E->id+id*id

E controls generation of + id

E’ controls generation of *. *’s are nested deeper in the parse tree.
24

Ambiguity - fixing

stmt -> if expr then stmt |
if expr then stmt else stmt |
other

String: if E1 then if E2 then S1 else S2

Exercise: verify if the above grammar is ambiguous. If so,
rewrite the grammar to make it unambiguous.

stmt -> matched | open

matched -> if expr then matched else matched |
other

open -> 1if expr then stmt |
if expr then matched else open

25

Error Handling

Objective: detect invalid programs and provide
meaningful feedback to programmer

Report errors accurately

Recover from errors quickly

Don’t slow down compilation

26

Error Types

 Many types of errors:
« Lexical —use Size Instead of size
e Syntactic — extra brace
« Semantic — float sqr; sqr(2);
 Logical — use = instead of ==

27

Error Handling - Types

1. Panic mode
2. Error production
3. Automatic local or global correction

28

Panic Mode Error Handling

Simplest, most popular

Discards tokens until one from a set of
synchronizing tokens is found

Synchronizing tokens have a clear role

e.g. semicolons, braces

E.g. i=i++]

policy: while parsing an expression, discard all tokens
until an integer is found. This policy skips the additional +
Specifying policy in bison: error keyword

E->E+E | (E) | id | error int | error
29

Error Productions

Anticipate common errors
2x instead of 2 *

Augment the grammar
E->EE]|...

Disadvantages:
Complicates the grammar

30

Error Corrections

Rewrite the program — find a “nearby” correct
program
Local corrections — insert a semicolon, replace a comma with
semicolon etc.
Global corrections — modify the parse tree with “edit distance”
metric in mind
Disadvantages?
Implementation difficulty
Slows down compilation
Not sure if “nearby” program is intended

31

Top-down Parsing

« Also called recursive-descent parsing

 Equivalent to finding the left-derivation for an
Input string
— Recall: expand the leftmost non-terminal in a parse
tree

— Expand the parse tree in pre-order i.e. identify parent
nodes before children

32

S ->cAd
A->ab|a

String: cad

t: next symbol to
be read

We need to backtrack
after step 3 and reset

iInput pointer

Can we do better ?

Top-down Parsing

Step | Input string | Parse tree
1 g:ad S
S
2 cad
7 SN
C A d
3 cad S
t T
C A d
N
a b
4 cad S
t RN
c A d
5

33

Top-down Parsing

1) S -> F (1) |la |+ |$
2) S -> (S + F)

3) F -> a S (2 |- |1 |- |-
string: (a+a) E |- |- [3 |- |-
string’. (a+a)$ Assume that the table is given.

« Table-driven (Parse Table) approach doesn’t require
backtracking

But how do we construct such a table?

34

First and follow sets

® First(X): the set of terminals (and/or
A) that begin all strings that can be
derived from «

® First(A) = {x,y, A}
® First(xaA) = {x}
® First (AB) = {x,y,b}

® Follow(A): the set of terminals (and/

or $,but no As) that can appear
immediately after A in some partial
derivation

e Follow(A) = {b}

S—AB$
A— xaA
A—-vyaA

B—b

35

First and follow sets

o First()={aeVe|ax="af}u{A]|ifx="A}

QPR W

Follow(A) ={aeV:|S=".Aa.}u{$|ifS=".A%}

start symbol

a terminal symbol

a non-terminal symbol

a string composed of terminals and

non-terminals (typically, is the

RHS of a production =: derivedin | step

=" derived in 0 or more steps

=7 derived in | or more steps

36

Computing first sets

® Terminal: First(a) = {a}
® Non-terminal: First(A)
® | ook at all productions for A
A — XiXz... Xk
® First(A) 2 (First(X)) - A)
e If A e First(X)), First(A) 2 (First(X3) - A)
e If N is in First(Xj) for all i, then A € First(A)

® Computing First(X): similar procedure to computing
First(A)

37

Top-down Parsing — predictive
parsers

® |dea: we know sentence has to start with initial symbol

® Build up partial derivations by predicting what rules are used
to expand non-terminals

® Often called predictive parsers

® |f partial derivation has terminal characters, match them
from the input stream

Suggested reading: https://en.wikipedia.org/wiki/LL_parser 38

A simple example
S—ABc$
A— xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B— A xacc$

39

A simple example
S—ABc§

A— xaA \

special “end of input” symbol

A—yaA
A—c
B—b ® A sentence in the grammar:

B— A xacc$

40

A simple example
S—2ABcS
A — xaA
A—-yaA
A—-c
B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: S

41

A simple example

S—ABc%
A— xaA
A—-yaA
A—-c
B—b
B— A

Current derivation: ABc $

® A sentence in the grammar:

xacch

Predict rule

42

A simple example
S—ABc$

A— xaA

Choose based on
first set of rules A Y aA

A—-c
B—b ® A sentence in the grammar:
B— A xacc$

Current derivation: xaABc$

Predict rule based on next token

43

A simple example
S—ABc$
A—xaA
A—yaA
A—-c
B—-b ® A sentence in the grammar:

B— A xacc$

Current derivation: xaABc$

Match token

44

A simple example
S—ABcS
A — xaA
A—yaA
A—c

B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xaABc$

Match token

45

A simple example
S—ABc$
A—xaA

Choose based on
first set of rules

A —yaA
A—c

B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacBc $

Predict rule based on next token

46

A simple example
S—ABc$
A - xaA
A —yaA
A-c
B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacBc $

Match token

A simple example
S—-ABc$

A— xaA

Choose based on
follow set

A—yaA
A—c

B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacAc$

Predict rule based on next token

48

A simple example
S—2>ABcS$
A —xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacc $

Match token

A simple example
S—2ABc$
A — xaA
A—yaA
A—-c
B—b ® A sentence in the grammar:

B— A xacc$

Current derivation: xacc $

Match token

Top-down vs. Bottom-up parsers

® Top-down parsers expand the parse tree in pre-order
® |dentify parent nodes before the children

® Bottom-up parsers expand the parse tree in post-order
® |dentify children before the parents

® Notation:
® |L(l):Top-down derivation with | symbol lookahead
® || (k):Top-down derivation with k symbols lookahead

® |R(I): Bottom-up derivation with | symbol lookahead

51

Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley
2007

— Chapter 4 (Sections: 4.1 to 4.4)

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 4, Chapter 5(Sections 5.1 to 5.5, 5.9)

52

