
1

CS406: Compilers
Spring 2020

Week 4: Parsers

2

Parsers - Overview

• Also called syntax analyzers

• Determine two things:

1. If a program is valid syntactically

- Is an English sentence grammatically correct?

2. Structure of programming language constructs

- E.g. the sequence IF, ID(a), OP(<), ID(b), {, ID(a),

ASSIGN, LIT(5), }, ;, } refers to if-statement ?

- Diagramming English sentences

3

Parsers - Overview

• Input: stream of tokens

• Output: Parse tree

– sometimes implicit

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

If-stmt

expr

expr)(

stmt-list

= 5b< 4a

}{

assign-stmt

Stream of tokens:

Parse tree:

4

Parsers – what do we need to

know?

1. How do we define language constructs?

– Context-free grammars

2. How do we determine: 1) valid strings in the

language? 2) structure of program?

– LL Parsers, LR Parsers

3. How do we write Parsers?

– E.g. use a parser generator tool such as Bison

5

Languages

• A language is (possibly infinite) set of strings

• Regular expressions describe regular languages

weakness: can’t describe a string of the form:

{ (i)i | i>=1}

Nested structures:

Parenthesized expressions: (((int x;)))

IF
IF
IF
FI

IF
FI

6

• Regular expressions can describe strings:
{ mod k | k = # states in FA}

1

1

“accept all strings having odd number of 1s”

Trivia

7

Context Free Grammar (CFG)

• Natural notation for describing recursive structure
definitions. Hence, suitable for specifying
language constructs.

• Consist of:

– A set of Terminals

– A set of Non-terminals

– A Start Symbol

– A set of Productions

8

Context Free Grammar (CFG)

• Terminology:

Terminals – T
Non-terminals – N
Start Symbol – S∈N
Productions – P (also called rules sometimes)

X Y1Y2Y3..YN | X∈N, Yi∈ N ⋃ T ⋃ ϵ/λ

• Grammar G = (T, N, S, P)

E.g. G = ({a,b}, {S, A, B}, S, {S AB, A Aa

A a, B Bb, B b})

• G is context free. Why?

9

10

String Derivations

• How do we apply the grammar rules repeatedly

to determine the validity of a string? (i.e. string belongs

to the language specified by the grammar)

1. Always start with the Start Symbol

2. Replace any Non-terminal X in the string by the right-

hand side of the production

3. Repeat Step 2 until there are no more non-terminals

11

12

13

Exercise

Which of the below strings are accepted by the

grammar:
A aAa

A bBb
A λ
B cA
B λ

1. abcba

2. abcbca

3. abba

4. abca

14

15

CFG Contd..

• Is it enough if parsers answer “yes” or “no” to check if a

string belongs to context-free language?

– Also need a parse tree

• What if the answer is a “no”?

– Handle errors

• How do we implement CFGs?

– E.g. Bison

16

17

Parse Trees and String Derivations

• Recall: sequence of rules applied to produce a

string is a derivation

• A derivation defines a parse tree

– A parse tree may have many derivations

18

19

20

Ambiguity

• Grammar that produces more than one parse

tree for some string
E.g. E -> E + E | E * E | id
String: id+id*id

E

E E+

id
E E*

id id

E->E+E
E->id+E
E->id+E*E
E->id+id*E
E->id+id*id

E

E E*

id
E E+

id id

E->E*E
E->E+E*E
E->id+E*E
E->id+id*E
E->id+id*id

21

Ambiguity – what to do?

• Ignore it

– Give hints to other components of the compiler

on how to resolve it

• Fix it

– Manually

– May make the grammar complicated and

difficult to maintain

22

Ambiguity – ignore

• E -> E + E | id

• Associativity declaration in Bison:
%left +

Picks the parse tree on the right

E

E E+

id
E E+

id id

E

E E+

id
E E+

id id

E->E+E
E->id+E
E->id+E+E
E->id+id+E
E->id+id+id

Produces:
id+(id+id)

E->E+E
E->E+E+E
E->id+E+E
E->id+id+E
E->id+id+id

Produces:
(id+id)+id

23

Ambiguity - ignore

• E -> E + E | E * E | id

%left +
%left *

Tells that * has higher precedence over + and both are left

associative. So we get the tree on left.

E

E E+

id
E E*

id id

E->E+E
E->id+E
E->id+E*E
E->id+id*E
E->id+id*id

E

E E*

id
E E+

id id

E->E*E
E->E+E*E
E->id+E*E
E->id+id*E
E->id+id*id

24

Ambiguity – fixing

• Rewrite E -> E + E | E * E | id as

E -> E’ + E | E’

E’ -> id * E’ | id | (E) * E’ | (E)

E controls generation of +

E’ controls generation of *. *’s are nested deeper in the parse tree.

E

E’ E+

id E’

id

E->E’+E
E->id+E
E->id+E’
E->id+id*E’
E->id+id*id

* E’

id

25

Ambiguity - fixing

stmt -> if expr then stmt |

if expr then stmt else stmt |

other

String: if E1 then if E2 then S1 else S2

Exercise: verify if the above grammar is ambiguous. If so,

rewrite the grammar to make it unambiguous.

stmt -> matched | open
matched -> if expr then matched else matched |

other
open -> if expr then stmt |

if expr then matched else open

26

Error Handling

• Objective: detect invalid programs and provide

meaningful feedback to programmer

• Report errors accurately

• Recover from errors quickly

• Don’t slow down compilation

27

Error Types

• Many types of errors:

• Lexical – use Size instead of size

• Syntactic – extra brace

• Semantic – float sqr; sqr(2);

• Logical – use = instead of ==

28

Error Handling - Types

1. Panic mode

2. Error production

3. Automatic local or global correction

29

Panic Mode Error Handling

• Simplest, most popular

• Discards tokens until one from a set of

synchronizing tokens is found

• Synchronizing tokens have a clear role

e.g. semicolons, braces

• E.g. i=i++j

policy: while parsing an expression, discard all tokens

until an integer is found. This policy skips the additional +

• Specifying policy in bison: error keyword

E -> E + E | (E) | id | error int | error

30

Error Productions

• Anticipate common errors
– 2x instead of 2 *

• Augment the grammar

– E -> EE | …

• Disadvantages:

– Complicates the grammar

31

Error Corrections

• Rewrite the program – find a “nearby” correct

program
– Local corrections – insert a semicolon, replace a comma with

semicolon etc.

– Global corrections – modify the parse tree with “edit distance”

metric in mind

• Disadvantages?

– Implementation difficulty

– Slows down compilation

– Not sure if “nearby” program is intended

32

Top-down Parsing

• Also called recursive-descent parsing

• Equivalent to finding the left-derivation for an

input string

– Recall: expand the leftmost non-terminal in a parse

tree

– Expand the parse tree in pre-order i.e. identify parent

nodes before children

33

Top-down Parsing

S -> cAd

A -> ab | a

String: cad

We need to backtrack

after step 3 and reset

input pointer

Step Input string Parse tree

1 cad s

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

Step Input string Parse tree

1 cad s

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

Step Input string Parse tree

1 cad s

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

Can we do better ?

: next symbol to

be read

34

Top-down Parsing

1) S -> F
2) S -> (S + F)
3) F -> a

• Table-driven (Parse Table) approach doesn’t require

backtracking

string: (a+a)

() a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?

35

36

37

38
Suggested reading: https://en.wikipedia.org/wiki/LL_parser

Top-down Parsing – predictive

parsers

39

40

41

42

43

44

45

46

47

48

49

50

51

52

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 4 (Sections: 4.1 to 4.4)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 4, Chapter 5(Sections 5.1 to 5.5, 5.9)

Suggested Reading

