
1

CS406: Compilers
Spring 2020

Week 3: Scanners

2

Scanner - Overview

• Also called lexers, lexical analyzers

• Recall: scanners break input stream up into a set

of tokens

– Identifiers, reserved words, literals, etc.

if (ID(a) OP(<) LIT(4))

{ ID(b) = LIT(5) }

\tif (a<4) {\n\t\tb=5\n\t}

3

Scanner - Overview

• Divide the program text into substrings or lexemes

– place dividers

• Identify the class of the substring identified

– Examples: Identifiers, keywords, operators, etc.
• Identifier – strings of letters or digits starting with a letter

• Integer – non-empty string of digits

• Keyword – “if”, “else”, “for” etc.

• Blankspace - \t, \n, „ „

• Operator – (,), <, =, etc.

• Substrings follow some pattern

4

Exercise

• What is the English language analogy for class?

• How many tokens of class identifier exist in the

code below?

for(int i=0;i<10;i++){\n\tprintf(“hello”);\n}

5

Scanner Output

• A token corresponding to each lexeme

– Token is a pair: <class, value>

A string / lexeme / substring of program text

Scanner Parser
tokensProgram

6

Scanners – interesting examples

• Fortran (white spaces are ignored)

DO 5 I = 1,25

DO 5 I = 1.25

• PL/1
DECLARE (ARG1, ARG2, . . .

• C++
Nested template: Quad<Square<Box>> b;

Stream input: std::cin >> bx;

We always need to look ahead to identify tokens

7

Scanners – what do we need to

know?

1. How do we define tokens?

– Regular expressions

2. How do we recognize tokens?

– build code to find a lexeme that is a prefix and that

belongs to one of the patterns.

3. How do we write lexers?

– E.g. use a lexer generator tool such as Flex

8

Regular Expressions

• Regular sets:
Formal: a language that can be defined by regular expressions

Informal: a set of strings defined by regular expressions

Strings are regular sets (with one element): pi 3.14159

• So is the empty string: λ (ɛ instead)

– Concatenations of regular sets are regular: pi3.14159

• To avoid ambiguity, can use () to group regexps together

– A choice between two regular sets is regular, using |: (pi|3.14159)

– 0 or more of a regular set is regular, using *: (pi)*

– Some other notation used for convenience:

• Use Not to accept all strings except those in a regular set

• Use ? to make a string optional: x? equivalent to (x|λ)

• Use + to mean 1 or more strings from a set: x+ equivalent to xx*

• Use [] to present a range of choices: [1-3] equivalent to (1|2|3)

9

Examples of Regular Expressions

• Digit: D = [0-9]

• Letter: L = [A-Za-z]

• Literals (integers or floats): -?D+(.D*)?

• Identifiers: (_|L)(_|L|D)*

• Comments (as in Micro): -- Not(\n)*\n

• More complex comments (delimited by ##, can

use # inside comment): ##((#|λ)Not(#))*##

10

Scanner Generators

• Essentially, tools for converting regular

expressions into scanners

• Lex (Flex) generates C/C++ scanners

11

Lex (Flex)

12

Lex (Flex)

Lexer Compiler

C Compiler

a.out

lex.l lex.yy.c

lex.yy.c a.out

input stream tokens

13

Lex (Flex)

• Format of lex.l

Declarations

%%

Translation rules

%%

Auxiliary functions

14

Lex (Flex)

15

Lex (Flex)

16

Recap…

• We saw what it takes to write a scanner:

– Specify how to identify token classes (using regexps)

– Convert the regexps to code that identifies a prefix of the

input string as a lexeme matching one of the token

classes

• Using tools for automatic code generation (e.g. Lex / Flex /
ANTLR)

How do these tools convert regexps to code?

Enabling concept: Finite Automata

17

Finite Automata

• Another way to describe sets of strings (just like

regular expressions)

• Also known as finite state machines / automata

• Reads a string, either recognizes it or not

• Features:

– State: initial, matching / final / accepting, non-matching

– Transition: a move from one state to another

18

Finite Automata

• Regular expressions and FA are equivalent*

* Ignoring the empty regular language

a

ba

initial state
state matching state

Exercise: what is the equivalent regular expression for this FA?

a

ba

initial state
state matching state

19

Think of this as an arrow to a state without a label

20

Non-deterministic Finite Automata

• A FA is non-deterministic if, from one state reading a single

character could result in transition to multiple states (or has

λ transitions)

• Sometimes regular expressions and NFAs have a close

correspondence

aba b

a(bb)+a

≡

21
What about A? (? as in optional)

22

Non-deterministic Finite Automata

• NFAs are concise but slow

• Example:

– Running the NFA for input string abbb requires exploring all

execution paths

* picture example taken from https://swtch.com/~rsc/regexp/regexp1.html

https://swtch.com/~rsc/regexp/regexp1.html

23

24

Non-deterministic Finite Automata

• NFAs are concise but slow

• Example:

– Running the NFA for input string abbb requires exploring all

execution paths

– Optimization: run through the execution paths in parallel

• Complicated. Can we do better?

* picture example taken from https://swtch.com/~rsc/regexp/regexp1.html

https://swtch.com/~rsc/regexp/regexp1.html

25

Each possible input character read leads to at most one new state

26

27

28

29

Example

30

Exercise

• Reduce the DFA

31

Scanner - flowchart

Lexical specification Regular expressions NFA

DFAReduced DFAImplementation

e.g. Identifiers are letter followed by

any sequence of digits or letters

32

Implementation: Transition Tables

33

DFA Program

34

35

36

37

38

39

40

Next time

41

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley

2007

– Chapter 3 (Sections: 3.1, 3,3, 3.6 to 3.9)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 3 (Sections 3.1 to 3.4, 3.6, 3.7)

Suggested Reading

