CS406: Compilers

Spring 2020

Week 3: Scanners

Scanner - Overview

« Also called lexers, lexical analyzers

« Recall: scanners break input stream up into a set
of tokens

— |dentifiers, reserved words, literals, etc.

\tif (a<4) {\n\t\tb=5\n\t}

J

2

Scanner - Overview

* Divide the program text into substrings or lexemes
— place dividers

* Identify the class of the substring identified

— Examples: Identifiers, keywords, operators, etc.
« ldentifier — strings of letters or digits starting with a letter
Integer — non-empty string of digits
Keyword — “if”, “else”, “for” etc.
Blankspace - \t, \n, *°
Operator — (,), <, =, etc.

« Substrings follow some pattern

Exercise

« What is the English language analogy for class?

 How many tokens of class identifier exist in the
code below?

for(int i=0;i<10;i++){\n\tprintf(“hello”);\n}

Scanner Output

* A token corresponding to each lexeme
— Token is a pair: <class, value>

|

A string / lexeme / substring of program text

Program tokens
> Scanner

A
A 4

Parser

Scanners — interesting examples

« Fortran (white spaces are ignored)
DO 5 1 = 1,25
DO 5 1 = 1.25

We always need to to identify tokens
« PL/1
DECLARE (ARG1, ARG2, . . .

e C++
Nested template: Quad<Square<Box>> b;
Stream input: std::cin >> bx;

Scanners — what do we need to
know?

1. How do we define tokens?
— Regular expressions
2. How do we recognize tokens?

— build code to find a lexeme that is a prefix and that
belongs to one of the patterns.

3. How do we write lexers?

— E.g. use a lexer generator tool such as Flex

Regular Expressions

Regular sets:
Formal: a language that can be defined by regular expressions
Informal: a set of strings defined by regular expressions
Strings are regular sets (with one element). pi 3.14159
« So is the empty string: A (€ instead)
— Concatenations of regular sets are regular: pi3.14159
» To avoid ambiguity, can use () to group regexps together
— A choice between two regular sets is regular, using |: (pi|3.14159)
— 0 or more of a regular set is regular, using *: (pi)*

— Some other notation used for convenience:
» Use Not to accept all strings except those in a regular set
« Use ? to make a string optional: x? equivalent to (x|A)
« Use + to mean 1 or more strings from a set: x+ equivalent to xx*
« Use []to present a range of choices: [1-3] equivalentto (1|2]3)

Examples of Regular Expressions

Digit: D = [0-9]

_etter: L = [A-Za-Z]

_iterals (integers or floats): -?D+(.D*)?
dentifiers: (_|L)(_|L|D)*

Comments (as in Micro): -- Not(\n)*\n

More complex comments (delimited by ##, can
use # inside comment): ##((#|A)Not(#)) ##

Scanner Generators

« Essentially, tools for converting regular
expressions into scanners

* Lex (Flex) generates C/C++ scanners

10

Lex (Flex)

Commonly used Unix scanner generator (superseded by
Flex)

Flex is a domain specific language for writing scanners

Features:
® Character classes : define sets of characters (e.g., digits)

® TJoken definitions : regex {action to take}

11

Lex (Flex)

lex.1 »Lexer Compiler »lex.yy.c
leX.yy.c ¥ C Comp”er » a.out
input stream > a.out » tokens

Lex (Flex)

Format of lex.l
Declarations
%676
Translation rules
%676

Auxiliary functions

13

Lex (Flex)
DIGIT [0-9]

ID [a—z][a-2z0-9]*

oo
oe

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,
atoi(yytext));

}

{DIGIT}+" ."{DIGIT}* {

printf("A float: %s (%2g)\n", yytext,

atof (yytext));
}

if|then|begin|end|procedure| function {
printf("A keyword: %s\n", yytext);

{ID} printf("An identifier: %s\n", yytext);

14

Lex (Flex)

The order in which tokens are defined matters!

Lex will match the longest possible token

e “ifa” becomes ID(ifa), not IF ID(a)

If two regexes both match, Lex uses the one defined first
e “if’” becomes IF, not ID(if)

Use action blocks to process tokens as necessary

® Convert integer/float literals to numbers

® Remove quotes from string literals

15

Recap...

« We saw what it takes to write a scanner:

— Specify how to identify token classes (using regexps)

— Convert the regexps to code that identifies a prefix of the
Input string as a lexeme matching one of the token
classes

 Using tools for automatic code generation (e.g. Lex / Flex /
ANTLR)

How do these tools convert regexps to code?

Enabling concept: Finite Automata 16

Finite Automata

Another way to describe sets of strings (just like
regular expressions)

Also known as finite state machines / automata

Reads a string, either recognizes it or not

Features:

— State: initial, matching / final / accepting, non-matching
— Transition: a move from one state to another

17

Finite Automata

* Regular expressions and FA are equivalent*

S

by by 4

initial state %
state matching state

Exercise: what is the equivalent regular expression for this FA?

* Ignoring the empty regular language

18

A transitions

® Transitions between states that aren’t triggered by seeing
another character

® (Can optionally take the transition, but do not have to

® (Can be used to link states together

O—0O

Think of this as an arrow to a state without a label

19

Non-deterministic Finite Automata

* A FA is non-deterministic if, from one state reading a single

character could result in transition to multiple states (or has
A transitions)

« Sometimes regular expressions and NFAs have a close
correspondence

a(bb)+a 20

Building a FA from a regexp

Expression FA
a @
A 8?\ @
e [OIO=COHO=O0
AlB Cx gg@
A — ”‘OTOj@

21

Non-deterministic Finite Automata
a b a b
= =—=O—=0——
=) {}‘] abab |abbb
a b b b
) e) D
« NFAs are concise but slow
« Example:

— Running the NFA for input string abbb requires exploring all
execution paths

22
* picture example taken from https://swich.com/~rsc/regexp/regexpl.htmi

https://swtch.com/~rsc/regexp/regexp1.html

“Running” an NFA

® |ntuition: take every possible path through an NFA

Think: parallel execution of NFA
Maintain a “pointer” that tracks the current state

Every time there is a choice,”split” the pointer, and have
one pointer follow each choice

Track each pointer simultaneously
® |f a pointer gets stuck, stop tracking it

® |f any pointer reaches an accept state at the end of
input, accept

23

Non-deterministic Finite Automata
a b a b
= =—=O—=0——
=) {}‘] abab |abbb
a b b b
— =0 =0 =D =0~
« NFAS are concise but slow

« Example:

— Running the NFA for input string abbb requires exploring all
execution paths

— Optimization: run through the execution paths in parallel

« Complicated. Can we do better?

* picture example taken from https://swich.com/~rsc/regexp/regexpl.htmi

24

https://swtch.com/~rsc/regexp/regexp1.html

NFAs to DFASs

Each possible input character read leads to at most one new state
e Can convert NFAs to deterministic finite automata (DFAs)

® No choices — never a need to “split” pointers

e |nitial idea: simulate NFA for all possible inputs, any time
there is a new configuration of pointers, create a state to
capture it

® Pointers at states |, 3 and 4 — new state {l, 3, 4}

® Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached
with a single character)

® Process ends when there are no new states found

® This can result in very large DFAs!

25

DFA reduction

DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

OG-0

26

DFA reduction

® DFAs built from NFAs are not necessarily optimal

e May contain many more states than is necessary

(ab)+ = (ab)(ab)*

() :

27

DFA reduction

® |ntuition: merge equivalent states

® TJwo states are equivalent if they have the same
transitions to the same states

® Basic idea of optimization algorithm

e Start with two big nodes, one representing all the final
states, the other representing all other states

® Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA

28

/ Qixample
NG
T

Exercise

 Reduce the DFA
O~~~
d
O-O--0

Scanner - flowchart

Lexical specification

e.g. ldentifiers are letter followed by
any sequence of digits or letters

A 4

Regular expressions

-
-
-

-
-
-

-
-
-

-
-
-

Implementation

NFA

Reduced DFA |*

DFA

31

Implementation: Transition Tables

® Table encoding states and transitions of FA
® | row per state, | column per possible character

® FEach entry: if automaton in a particular state sees a
character, what is the next state’

Character

State a
a b c
[2
i
4 k 7
/ \ 7
fi

|
|

| \
| start state] [transition] | state]

32

DFA Program

® Using a transition table, it is straightforward to write a
program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {

next_char = getc();

1t (next_char == EOF) break;
next_state = T[state][next_char];
1t (next_state == ERROR) break;
state = next_state;

(1s_final_state(state))
//recognized a valid string

else

handle_error(next_char);

o3

Alternate implementation

® Here’s how we would implement the same program
“conventionally”

next_char = getc();

while (next_char == ‘a’) {
next_char = getc();
1f (next_char '= ‘b’) handle_error(next_char);
next_char = getc();
1f (next_char !'= ‘c’) handle_error(next_char);
while (next_char == ‘c’) {

next_char = getc();

1f (next_char == EOF) return; //matched token
1T (next_char == ‘a’) break;

1T (next_char !'= ‘c’) handle_error(next_char);

¥
¥

handle_error(next_char);
34

Lookahead

® Up until now, we have only considered matching an entire
string to see if it is in a regular language

® What if we want to match multiple tokens from a file?

Distinguish between and

We need to look ahead to see if the next character
belongs to the current token

If it does, we can continue

If it doesn’t, the next character becomes part of the next
token

350

Multi-character lookahead

Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

Examples

¢ Fortran: DO | = |,100 (loop) vs. DO | = [.100 (variable
assignment)

® Pascal: 23.85 (literal) vs. 23..85 (range)

g0

2 solutions: Backup or special “action” state

36

Multi-character lookahead

Sometimes, a scanner will need to look ahead more than one
character to distinguish tokens

Examples

® Fortran: DO | = 1,100 (loop) vs. DO | = 1.100 (variable

assighment)

® Pascal: 23.85 (literal) vs. 23..85 (range)

o858

2 solutions: Backup or special “action” state

37

General approach

Remember states (T) that can be final states
Buffer the characters from then on

If stuck in a non-final state, back up to T, restore buffered
characters to stream

Example: | 2.3e+q

38

Error Recovery

® What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

® Two options

Delete all currently read characters, start scanning from
current location

Delete first character read, start scanning from second
character

® This presents problems with ill-formatted strings
(why?)

® One solution: create a new regexp to accept runaway
strings

39

Next time

® We've covered how to tokenize an input program
® But how do we decide what the tokens actually say?
® How do we recognize that
IF ID(a) OP(<) ID(b) { ID(a) ASSIGN LIT(5) ;}
is an if-statement?

® Next time: Parsers

40

Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley
2007

— Chapter 3 (Sections: 3.1, 3,3, 3.6 t0 3.9)

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 3 (Sections 3.1 to 3.4, 3.6, 3.7)

41

