Dataflow Analysis

Week 14: Liveness Analysis

Recap

Dataflow analysis is the framework for optimizing the whole
program (not just basic blocks)

A complex program is analyzed by looking at a pair of adjacent
statements
— ‘Push’ / ‘transfer’ information from one statement to another.
E.g. in constant propagation, the information consisted of a state vector
containing special values (Top, Bottom, K)
Construct CFG

Symbolically execute the program by traversing the CFG

— Determine the parameters: lattice, transfer function, direction of execution,
and how to compute information at merge points (confluence operator).
Run work list algorithm.

Recap..

1. We used abstract values (Bottom (L), Top (T), K) to associate with
a set of concrete values of variables (e.g. in constant propagation)

2. The abstract values are ordered according to the information that
they convey (from least to most information):

1 < K< T (L - Don’t know / statement not executed, K —some
constant, T - definitely not constant)

3. The value for a variable changes monotonically (meet / M and
join / U operators ensure this)

The monotonicity property also ensures that the worklist algorithm terminates

How do we use dataflow analysis for computing liveness
property of variable (s)?

Presenter
Presentation Notes
Why ⊤ is > than K ? (think: ⊤ can hold more than one value)
Note that in the lattice for constant propagation, there are no edges between two Ks. What this means is that there is no relationship (<) between two distinct Ks.
Exercise: what are the values of ⊔(2, 3) ⊔(⊥, 2), and ⊔(⊤, 3)?

Liveness — Recap..

X defined here

1: X = 10 X is live at 1

...... . may be used in future

X used here

A variable X is live at statement S if:
— There is a statement S’ that uses X
— ThereisapathfromSto S
— There are no intervening definitions of X

Liveness — Recap..

X defined here

1:\X = 10 X is dead at 1

2: X =Y + 2
N: Y=X+5
X used here

A variable X is dead at statement S if it is not live at S:

— E.g. If statement S is of the form X=exp, then there exists no
statement that uses the value of X computed at S.

Presenter
Presentation Notes
For a statement “X = X + 1”, because we read the earlier value of X before computing newer value of X, we say that X is live in this statement (even though X is defined).

Liveness in a CFG

<— Given that e does not use X, X is
X = e | definitely dead here (i.e. before
the statement).

Liveness in a CFG

If X is live here (i.e. after the
X =¢e statement), X is used in some

%
/ successor

Liveness in a CFG

<—— X must be live here (i.e.
. = X | before the statement)

Liveness in a CFG

< X notlive here / X is live here
[) [] = Y

<« IfXisnotlive here / Xis live here

*|f a node neither uses nor defines X, the liveness property remains the
same before and after executing the node

Choose dataflow direction

® A variable is live if it is used later in the program without
being redefined

® At a given program point, we want to know information
about what happens later in the program

® This means that liveness is a backwards analysis

® Recall that we did liveness backwards when we
looked at single basic blocks

10

Create x-fer functions

Let’'s generalize

For any statement s, we can look at which live variables are killed, and
which new variables are made live (generated)

Which variables are killed in s?
® The variables that are defined in s: DEF(s)

Which variables are made live in s?
e The variables that are used in s: USE(s)

If the set of variables that are live after s is X, what is the set of variables
live before s?

To(X) = use(s) U (X — def(s))

11

Dealing with aliases

® Aliases, as usual, cause problems

® Consider

int x, y, r, s

int *z, *w;

if (...) z = &y else z = &X

1f (...) w = &r else w = &s

*z = *w; //which variable 1s defined? which 1s used?

® What should USE(*z = *w) and DEF(*z = *w) be?

® Keep in mind: the goal is to get a list of variables that may
be live at a program point

® For now, assume there is no aliasing

12

Dealing with function calls

® Similar problem as aliases:

int foo(int &x, 1nt &y); //pass by reference!

void main() {
int x, y, z;
z = foo(x, Yy);
ks

® Simple solution: functions can do anything — redefine
variables, use variables

® So DEF(foo()) is { } and USE(foo()) isV

® Real solution: interprocedural analysis, which determines what
variables are used and defined in foo

13

Choose confluence operator

® What happens at a merge

point?
?
® The variables live in to a
merge point are the
variables that are live I J=x I = w
along either branch /
® Confluence operator: Set \
union (u) of all live sets of x=w

outgoing edges

' B
1 merge — U X

X esuce(merge)

Presenter
Presentation Notes
Note that we are doing backward analysis and a “merge point” would actually be a statement with control divergence.

How to initialize analysis!?

® At the end of the program, we know no variables are live
— value at exit point is { }

® What about if we're analyzing a single function? Need to
make conservative assumption about what may be live

® What about elsewhere in the program!?

® We should initialize other sets to { }

15

TF

READ(Z) READ(Z)

F
READ(N) READ(N)

F

X =2
X =2
F
X < N? F
ﬁ’ ﬁ X < N?
D
X=X+ Z X=X+ 17 F

PRINT(X) PRINT(X)

TF

Original CFG

CFG with edges reversed (and
initialized) for backwards analysis: is X
live? (F=false, T=true)

T F

READ(Z)

F

READ(N)

X

X+ Z

PRINT(X)

T

X must be live here
(rule: slide 8)

T F

READ(Z)

F

READ(N)

X

X+ Z

PRINT(X)

T

X must be live here
(applying X-fer function slide 11)

T F

READ(Z)

F

READ(N)

X must be live here

(applying X-fer function slide 11)

=

X=X+ Z

PRINT(X)

T

T F

READ(Z)
F
READ(N)
F
X =2
T
T
PR
X=X+ 7 T

/
X must be live here / PRINT(X)

(applying X-fer function slide 11) T T

T F

READ(Z)

F

READ(N)

X dead here (slide 6) (nothing
changes).

X=X+ Z

PRINT(X)

T

T F

X=X+ Z

READ(Z)
 F
READ(N)
F
X =2
T
X < N?
T
PRINT(X)

T

X dead here (slide 6) (nothing
changes).

X dead here (slide 6) (nothing
\ changes).

X=X+ Z

PRINT(X)

T

Exercise

Repeat liveness for variables Z and N

Live: {Z, N}
IIEADQ) I

i Live: {Z, N}

I READ(N) I

: Live: {Z, N}

[x> |

{}

Live: {X, Z, N}

Live: {X, Z, N}

I X=X+2Z

Live: {X, Z, N} T

{}

-0
: Live: {X, Z, N}

I X<N? I

3 Live: {X, Z, N}

{}

O

: Live: {X}

I PRINT(X) I_I_{'}_’{X}
ive:

25

	Dataflow Analysis
	Recap
	Recap..
	Liveness – Recap..
	Liveness – Recap..
	Liveness in a CFG
	Liveness in a CFG
	Liveness in a CFG
	Liveness in a CFG
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Exercise
	Slide Number 25

