
Dataflow Analysis

Week 14: Liveness Analysis

1

Recap

1. Dataflow analysis is the framework for optimizing the whole
program (not just basic blocks)

2. A complex program is analyzed by looking at a pair of adjacent
statements
– ‘Push’ / ‘transfer’ information from one statement to another.

E.g. in constant propagation, the information consisted of a state vector
containing special values (Top, Bottom, K)

3. Construct CFG
4. Symbolically execute the program by traversing the CFG

– Determine the parameters: lattice, transfer function, direction of execution,
and how to compute information at merge points (confluence operator).
Run work list algorithm.

2

Recap..

1. We used abstract values (Bottom (⊥), Top (⊤), K) to associate with
a set of concrete values of variables (e.g. in constant propagation)

2. The abstract values are ordered according to the information that
they convey (from least to most information):
⊥ < K < ⊤ (⊥ - Don’t know / statement not executed, K – some

constant, ⊤ - definitely not constant)

3. The value for a variable changes monotonically (meet / ⊓ and
join / ⊔ operators ensure this)
The monotonicity property also ensures that the worklist algorithm terminates

How do we use dataflow analysis for computing liveness
property of variable (s)?

3

Presenter
Presentation Notes
Why ⊤ is > than K ? (think: ⊤ can hold more than one value)
Note that in the lattice for constant propagation, there are no edges between two Ks. What this means is that there is no relationship (<) between two distinct Ks.
Exercise: what are the values of ⊔(2, 3) ⊔(⊥, 2), and ⊔(⊤, 3)?

Liveness – Recap..

1: X = 10
…….

N: Y = X + 5

X used here

X defined here

A variable X is live at statement S if:
– There is a statement S’ that uses X
– There is a path from S to S’
– There are no intervening definitions of X

X is live at 1

may be used in future

4

Liveness – Recap..

1: X = 10
2: X = Y + 2

….
N: Y = X + 5

X used here

X defined here

A variable X is dead at statement S if it is not live at S:
– E.g. If statement S is of the form X=exp, then there exists no

statement that uses the value of X computed at S.

X is dead at 1

5

Presenter
Presentation Notes
For a statement “X = X + 1”, because we read the earlier value of X before computing newer value of X, we say that X is live in this statement (even though X is defined).

Liveness in a CFG

X = e

…

…

Given that e does not use X,X is
definitely dead here (i.e. before
the statement).

6

Liveness in a CFG

X = e

…

…

If X is live here (i.e. after the
statement), X is used in some
successor

… …

7

Liveness in a CFG

.. = X

…

…

X must be live here (i.e.
before the statement)

8

Liveness in a CFG

.. = Y

…

…

9

•If a node neither uses nor defines X, the liveness property remains the
same before and after executing the node

X not live here / X is live here

If X is not live here / X is live here

10

11

12

13

14

Presenter
Presentation Notes
Note that we are doing backward analysis and a “merge point” would actually be a statement with control divergence.

15

16

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

Original CFG CFG with edges reversed (and
initialized) for backwards analysis: is X
live? (F=false, T=true)

F

F

F
F

F

F

F

F

17

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

F

F
F

F

F

F

F

X must be live here
(rule: slide 8)

18

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

F
F

F

F

F

F

X must be live here
(applying X-fer function slide 11)

19

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

F

F

F

F

X must be live here
(applying X-fer function slide 11)

20

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X must be live here
(applying X-fer function slide 11)

21

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (slide 6) (nothing
changes).

22

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (slide 6) (nothing
changes).

23

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F
X dead here (slide 6) (nothing
changes).

Exercise

Repeat liveness for variables Z and N

24

25

Live: {X}

Live: {X, Z, N}Live: {X, Z, N}

Live: {X, Z, N}
Live: {X, Z, N}

Live: {X, Z, N}

Live: {Z, N}

Live: {Z, N}

Live: {Z, N}

Live: {X}

	Dataflow Analysis
	Recap
	Recap..
	Liveness – Recap..
	Liveness – Recap..
	Liveness in a CFG
	Liveness in a CFG
	Liveness in a CFG
	Liveness in a CFG
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Exercise
	Slide Number 25

