
Dataflow Analysis

Week 14: Liveness Analysis
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Recap

1. Dataflow analysis is the framework for optimizing the whole 
program (not just basic blocks)

2. A complex program is analyzed by looking at a pair of adjacent 
statements
– ‘Push’ / ‘transfer’ information from one statement to another.

E.g. in constant propagation, the information consisted of a state vector     
containing special values (Top, Bottom, K)

3. Construct CFG 
4. Symbolically execute the program by traversing the CFG

– Determine the parameters: lattice, transfer function, direction of execution, 
and how to compute information at merge points (confluence operator). 
Run work list algorithm.
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Recap..

1. We used abstract values (Bottom (⊥), Top (⊤), K) to associate with 
a set of concrete values of variables (e.g. in constant propagation)

2. The abstract values are ordered according to the information that 
they convey (from least to most information):  
⊥ < K < ⊤ (⊥ - Don’t know / statement not executed, K – some 

constant, ⊤ - definitely not constant)

3. The value for a variable changes monotonically (meet / ⊓ and  
join / ⊔ operators ensure this)                                                           
The monotonicity property also ensures that the worklist algorithm terminates

How do we use dataflow analysis for computing liveness
property of variable (s)? 

3

Presenter
Presentation Notes
Why ⊤ is > than K ? (think: ⊤ can hold more than one value)
Note that in the lattice for constant propagation, there are no edges between two Ks. What this means is that there is no relationship (<) between two distinct Ks. 
Exercise: what are  the values of ⊔(2, 3) ⊔(⊥, 2), and ⊔(⊤, 3)?



Liveness – Recap..

1: X = 10
…….

N: Y = X + 5  

X used here

X defined here

A variable X is live at statement S if:
– There is a statement S’ that uses X
– There is a path from S to S’
– There are no intervening definitions of X

X is live at 1

may be used in future
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Liveness – Recap..

1: X = 10
2: X = Y + 2

…. 
N: Y = X + 5  

X used here

X defined here

A variable X is dead at statement S if it is not live at S:
– E.g. If statement S is of the form X=exp, then there exists no 

statement that uses the value of X computed at S. 

X is dead at 1
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Presenter
Presentation Notes
For a statement “X =  X + 1”, because we read the earlier value of X before computing newer value of X, we say that X is live in this statement (even though X is defined). 



Liveness in a CFG

X = e

…

…

Given that e does not use X,X is 
definitely dead here (i.e. before 
the statement).
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Liveness in a CFG

X = e

…

…

If X is live here (i.e. after the 
statement), X is used in some
successor

… …
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Liveness in a CFG

.. = X

…

…

X must be live here (i.e. 
before the statement)
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Liveness in a CFG

.. = Y

…

…
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•If a node neither uses nor defines X, the liveness property remains the 
same before and after executing the node

X not live here / X is live here

If X is not live here / X is live here
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Presenter
Presentation Notes
Note that we are doing backward analysis and a “merge point” would actually be a statement with control divergence.
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

Original CFG CFG with edges reversed (and 
initialized) for backwards analysis: is X 
live? (F=false, T=true)

F

F

F
F

F

F

F

F



17

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

F

F
F

F

F

F

F

X must be live here
(rule: slide 8) 
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

F
F

F

F

F

F

X must be live here
(applying X-fer function slide 11) 
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

F

F

F

F

X must be live here
(applying X-fer function slide 11) 
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X must be live here
(applying X-fer function slide 11) 



21

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (slide 6) (nothing 
changes). 
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (slide 6) (nothing 
changes). 
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F
X dead here (slide 6) (nothing 
changes). 



Exercise

Repeat liveness for variables Z and N
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Live: {X}

Live: {X, Z, N}Live: {X, Z, N}

Live: {X, Z, N}
Live: {X, Z, N}

Live: {X, Z, N}

Live: {Z, N}

Live: {Z, N}

Live: {Z, N}

Live: {X}
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