
Dataflow Analysis

Week 13: Constant Propagation

(Slides courtesy: Prof. Milind Kulkarni)

Program Optimizations

• So far we have talked about different kinds of
optimizations
– Peephole optimizations
– Local common sub-expression elimination

• What about global optimizations
– Optimizations across multiple basic blocks (usually

a whole procedure)
• Not just a single loop

Example: Constant Propagation and Dead
Code Elimination

X = 1
Y = 1 + 2
Z = Y + A

X = 1
Y = X + 2
Z = Y + A

X = 1
Y = 1 + 2
Z = Y + A

Constant Propagation Dead Code Elimination

Presenter
Presentation Notes
Constant propagation is propagating the constant value of a variable to the place where it is used. Assuming that the only usage of X is in the second statement, after constant propagation, the first statement becomes dead code (so, we can eliminate it).

Exercise – Constant Propagation
1. X := 2
2. Label1:
3. Y := X + 1
4. if Z > 8 goto Label2
5. X := 3
6. X := X + 5
7. Y := X + 5
8. X := 2
9. if Z > 10 goto Label1
10. X := 3
11. Label2:
12. Y := X + 2
13. X := 0
14. goto Label3
15. X := 10
16. X := X + X
17. Label3:
18. Y := X + 1

Which lines using X could be replaced
with a constant value? (apply only
constant propagation)

Presenter
Presentation Notes
How can we automate the process of solving this exercise problem?

Presenter
Presentation Notes
The first step of the algorithm – building a statement-level CFG

Presenter
Presentation Notes
In the next step, we need to symbolically evaluate the code. What this means that in a step-by-step execution through the program, the variables of a program don’t take specific values. Instead, they take symbols: e.g. for constant propagation, whenever we encounter the three possible scenarios for variables --- may or maynot be a const / don’t know, definitely not a constant, constant ---, we resp. use the symbols bottom (inverted T), top (T), and one of the infinitely many constant values.

These symbols are shown in a lattice arranged from least information (don’t know) to most information (definitely not a constant).

Presenter
Presentation Notes
In a step-by-step execution of the program statements, we call the eval function on each statement. Ignore the inputs to the eval function for now. We’ll see it soon.

In a statement, if a variable is computed as a result of two or more other variables and any of those variables is not a constant (or don’t know), then we definitely know that the variable being computed is definitely not a constant (or don’t know).

Two special operations example:
meet(don’t know, constant value K) = constant value K
join(don’t know, const value K) = don’t know

Presenter
Presentation Notes
So, in our automatic computation of determining whether a variable is constant or not, we have two steps: 1) build a statement-level cfg and 2) symbolically evaluate
For the running example introduced earlier, if we are analyzing the const property of variables x and y at any point in the program, then we need to keep track of a state vector for these two variables.

The state vector is shown as a label on the edges of a CFG. To begin with, we initialize the label on the starting edge to (top, top)=(definitely not a constant, definitely not a constant). All other edges have labels (bottom, bottom), indicating that we don’t know anything about the variables (makes sense because we haven’t yet analyzed those nodes/statements).

Presenter
Presentation Notes
When we visit a node / evaluate a statement of the form “ t = e” what should happen? We use the incoming state vector, Vin, and depending upon whether e is a constant or not (e may be an expression of two or more variables), we update the value of t in Vin and propagate the updated vector on outgoing edge.

Presenter
Presentation Notes
Let’s say that on one path we know x is a constant with value 3 and on another path we know that x is a constant with value 2, what can we say about the place where both paths merge? --- we know that x is definitely not a constant (can be 2 or 3)

Similarly, if we know that on path A we know that x is definitely not a constant and on another path, we know that x is a constant with value 2 (or don’t know anything), at the merge point we try to be conservative and say that x is definitely not a constant.

If we don’t know anything about x on a path and on another path we know that x is definitely not a constant (or a constant with value K), we say at the merge point, that x is definitely not a constant (or a constant with value K).

Translating these possibilities in terms of the lattice for constant propagation, we see that at the merge point, we are choosing a symbol that is at least as high as the higher of the two symbols corresponding to the two paths. This exactly refers to the definition of the join operation on lattice from the previous slide. So, we write Vout= V1 U V2 at merge points.

Presenter
Presentation Notes
Here is the worklist algorithm for systematically computing/updating the state vectors.

Presenter
Presentation Notes
Initial state.

Presenter
Presentation Notes
At “x=1”: Vin=(T,T) Vout=(1,T) //eval(1,Vin) returns 1.
Now, since the outedge changed from (bottom, bottom) to (1, top) (1,T), we add (1,T) to worklist and process it.
At “y=x+2”: we know that x is a constant with value 2 (from Vin). So, y is a constant with value 3. We update Vout as (1,3)
At “y>x?”: we know that y is a constant with value 3 and x is a constant with value 1. This always evaluates to true. Hence, we propagate Vout along only the true direction.
At merge point, we apply the join operation and get the resulting vector as (1,5).
Continuing in this way, we get the state vectors shown.

Presenter
Presentation Notes
In this example, when the loop is entered for the first time, the edge between “merge” and “x<100?” (lets call this edge E) is computed after applying join on state vectors(1, bottom) --- the edge coming from “x=x+1” to merge (lets call this edge G) is initialized to bottom. The edge coming from “…” to merge has 1 (because we know that x is a constant with value 1). Join(1, bottom) = 1.

At “x<100?” when Vin is 1, the condition is true. So, Vout (1) is propagated only on the edge between “x<100” and the “…” within the loop (lets call this edge F).
Continuing, the label on edge G is updated as (2). “x=x+1” with Vin=(1) computes Vout as (2).

Now at merge, we need to compute join(2, 1). This gives Vout and the updated label on edge E as (T). Why T? refer the slide on handling merges.

All subsequent times, we get x=T.

	Dataflow Analysis
	Program Optimizations
	Slide Number 3
	Slide Number 4
	Example: Constant Propagation and Dead Code Elimination
	Slide Number 6
	Exercise – Constant Propagation
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

