Dataflow Analysis

Week 13: Constant Propagation

(Slides courtesy: Prof. Milind Kulkarni)

Program Optimizations

e So far we have talked about different kinds of
optimizations
— Peephole optimizations

— Local common sub-expression elimination

 What about global optimizations

— Optimizations across multiple basic blocks (usually
a whole procedure)

* Not just a single loop

Useful optimizations

Common subexpression elimination (global)
® Need to know which expressions are available at a point
Dead code elimination

® Need to know if the effects of a piece of code are never
needed, or if code cannot be reached

Constant folding
® Need to know if variable has a constant value

So how do we get this information?

Dataflow analysis

® Framework for doing compiler analyses to drive optimization

® Works across basic blocks

® Examples

Constant propagation: determine which variables are
constant

Liveness analysis: determine which variables are live

Available expressions: determine which expressions are
have valid computed values

Reaching definitions: determine which definitions could
“reach” a use

<

Example: Constant Propagation and Dead
Code Elimination

1 X=1 ="
X+2 O Y=1+2 > Y=1+2
Y + A Z =Y + A Z =Y + A

Constant Propagation Dead Code Elimination

Presenter
Presentation Notes
Constant propagation is propagating the constant value of a variable to the place where it is used. Assuming that the only usage of X is in the second statement, after constant propagation, the first statement becomes dead code (so, we can eliminate it).

Example: constant propagation

® Goal: determine when variables take on constant values
® Why? Can enable many optimizations

® Constant folding

x =13 X = 1;
y =X + 2; y = 3;
1f (x > z) theny =5 1f (x > 2z) theny =5
VAR VA
® (reate dead code
y =X + 2; > y = 3; //dead code

1f (y > x) theny =5 1f (true) then y = 5 //simplify!
VAR e Y ..

Exercise — Constant Propagation

1. X =2

2. Labell:

3. Y:=X+1

4. if Z > 8 goto Label2

5. X =3

6. X := X Which lines using X could be replaced
7.V := X with a constant value? (apply only
8. X := 2 constantpropagation)

9. if Z > 10 goto Labell

10. X := 3

11. Label2:

12.Y := X + 2

13. X := 0

14. goto Label3

15. X := 10

16. X := X + X

17. Label3:

=
co

.Y (=X +1

Presenter
Presentation Notes
How can we automate the process of solving this exercise problem?

How can we find constants/’

® |deal: run program and see which variables are constant

® Problem: variables can be constant with some inputs, not
others — need an approach that works for all inputs!

® Problem: program can run forever (infinite loops?) —
need an approach that we know will finish

® |dea: run program symbolically

® Essentially, keep track of whether a variable is constant
or not constant (but nothing else)

Overview of algorithm

® Build control flow graph

® We'll use statement-level CFG (with merge nodes) for
this

® Perform symbolic evaluation
® Keep track of whether variables are constant or not

® Replace constant-valued variable uses with their values, try
to simplify expressions and control flow

x = 1;

y = X + 2;

1t (y > x) then
R

Build CFG

Presenter
Presentation Notes
The first step of the algorithm – building a statement-level CFG

Symbolic evaluation

® |dea:replace each value with a
symbol

® constant (specify which), no
information, definitely not
constant

® (Can organize these possible
values in a [attice

® Set of possible values,
arranged from least
information to most
information

7

2-101 2

Presenter
Presentation Notes
In the next step, we need to symbolically evaluate the code. What this means that in a step-by-step execution through the program, the variables of a program don’t take specific values. Instead, they take symbols: e.g. for constant propagation, whenever we encounter the three possible scenarios for variables --- may or maynot be a const / don’t know, definitely not a constant, constant ---, we resp. use the symbols bottom (inverted T), top (T), and one of the infinitely many constant values.

These symbols are shown in a lattice arranged from least information (don’t know) to most information (definitely not a constant).

Symbolic evaluation

® FEvaluate expressions symbolically:
eval(e,Vin)

e |[f e evaluates to a constant,

return that value. If any input is
T (or L), return T (or 1) //‘\\

* Why?

® Two special operations on lattice \\ |///

® meet(a, b) — highest value less
than or equal to both aand b

Join often writtenasa b

o i B .
join(a, b) — lowest value greater Meet often written as a [b

than or equal to bothaand b

Presenter
Presentation Notes
In a step-by-step execution of the program statements, we call the eval function on each statement. Ignore the inputs to the eval function for now. We’ll see it soon.

In a statement, if a variable is computed as a result of two or more other variables and any of those variables is not a constant (or don’t know), then we definitely know that the variable being computed is definitely not a constant (or don’t know).

Two special operations example:
meet(don’t know, constant value K) = constant value K
join(don’t know, const value K) = don’t know

Putting it together

o Keep track of the symbolic value of -
a variable at every program point - 1
(on every CFG edge) —

® State vector

® What should our initial value be?

® Starting state vectoris all T

e Can’t make any assumptions
about inputs — must assume

not constant merge
1]4L
® Everything else starts as L, since
we have no information about -
the variable at that point el

end

Presenter
Presentation Notes
So, in our automatic computation of determining whether a variable is constant or not, we have two steps: 1) build a statement-level cfg and 2) symbolically evaluate
For the running example introduced earlier, if we are analyzing the const property of variables x and y at any point in the program, then we need to keep track of a state vector for these two variables.

The state vector is shown as a label on the edges of a CFG. To begin with, we initialize the label on the starting edge to (top, top)=(definitely not a constant, definitely not a constant). All other edges have labels (bottom, bottom), indicating that we don’t know anything about the variables (makes sense because we haven’t yet analyzed those nodes/statements).

Executing symbolically

® For each statement t = e evaluate
e using Vi, update value for t and
propagate state vector to next
statement

® What about switches?

® |[f eis true or false, propagate Vin
to appropriate branch

e What if we can’t tell?

® Propagate Vi, to both
branches, and symbolically
execute both sides

e What do we do at merges?

end

Xy
TIT
X =1
i
y=X+2
1L
LlL
1L y=>5
"”,,,,/'J_ 1
merge
1L
Y.
i

Presenter
Presentation Notes
When we visit a node / evaluate a statement of the form “ t = e” what should happen? We use the incoming state vector, Vin, and depending upon whether e is a constant or not (e may be an expression of two or more variables), we update the value of t in Vin and propagate the updated vector on outgoing edge.

Handling merges

Have two different Viys coming from two
different paths

Goal: want new value for Vi, to be safe
(shouldn’t generate wrong information), and we
don’t know which path we actually took

Consider a single variable. Several situations:
e V=1, Va=%* Vg =*

® V| =constant x,V2 = x = Vou = X

® V| =constant X,V = constanty = Vgoue = T

® Vi=TV2=F>Voue=T //l\\
Generalization:

o Vo =ViUV; \\I//

Presenter
Presentation Notes
Let’s say that on one path we know x is a constant with value 3 and on another path we know that x is a constant with value 2, what can we say about the place where both paths merge? --- we know that x is definitely not a constant (can be 2 or 3)

Similarly, if we know that on path A we know that x is definitely not a constant and on another path, we know that x is a constant with value 2 (or don’t know anything), at the merge point we try to be conservative and say that x is definitely not a constant.

If we don’t know anything about x on a path and on another path we know that x is definitely not a constant (or a constant with value K), we say at the merge point, that x is definitely not a constant (or a constant with value K).

Translating these possibilities in terms of the lattice for constant propagation, we see that at the merge point, we are choosing a symbol that is at least as high as the higher of the two symbols corresponding to the two paths. This exactly refers to the definition of the join operation on lattice from the previous slide. So, we write Vout= V1 U V2 at merge points.

Result: worklist algorithm

® Associate state vector with each edge of CFG, initialize all
values to L, worklist has just start edge

® While worklist not empty, do:

Process the next edge from worklist
Symbolically evaluate target node of edge using input state vector

If target node 1s assignment (x = e), propagate Vin[eval(e)/x] to
output edge

If target node is branch (e?)

If eval(e) 1s true or false, propagate Vin to appropriate output
edge

Else, propagate Vin along both output edges
If target node 1s merge, propagate join(all Vin) to output edge
If any output edge state vector has changed, add it to worklist

Presenter
Presentation Notes
Here is the worklist algorithm for systematically computing/updating the state vectors.

Running example

TyT

X=1

Presenter
Presentation Notes
Initial state.

Running example

T

Xx =1

T

y=X+12

13

1
195
5

Presenter
Presentation Notes
At “x=1”: Vin=(T,T) Vout=(1,T) //eval(1,Vin) returns 1.
Now, since the outedge changed from (bottom, bottom) to (1, top) (1,T), we add (1,T) to worklist and process it.
At “y=x+2”: we know that x is a constant with value 2 (from Vin). So, y is a constant with value 3. We update Vout as (1,3)
At “y>x?”: we know that y is a constant with value 3 and x is a constant with value 1. This always evaluates to true. Hence, we propagate Vout along only the true direction.
At merge point, we apply the join operation and get the resulting vector as (1,5).
Continuing in this way, we get the state vectors shown.

What do we do about loops?

® Unless a loop never executes, symbolic execution looks like
it will keep going around to the same nodes over and over

again

® |[nsight: if the input state vector(s) for a node don'’t change,
then its output doesn’t change

® |[f input stops changing, then we are done!

® Claim: input will eventually stop changing. Why?

Loop example

First time through loop, x = |
Subsequent times,x = T

X =X + 1

Presenter
Presentation Notes
In this example, when the loop is entered for the first time, the edge between “merge” and “x<100?” (lets call this edge E) is computed after applying join on state vectors(1, bottom) --- the edge coming from “x=x+1” to merge (lets call this edge G) is initialized to bottom. The edge coming from “…” to merge has 1 (because we know that x is a constant with value 1). Join(1, bottom) = 1.

At “x<100?” when Vin is 1, the condition is true. So, Vout (1) is propagated only on the edge between “x<100” and the “…” within the loop (lets call this edge F).
Continuing, the label on edge G is updated as (2). “x=x+1” with Vin=(1) computes Vout as (2).

Now at merge, we need to compute join(2, 1). This gives Vout and the updated label on edge E as (T). Why T? refer the slide on handling merges.

All subsequent times, we get x=T.

Complexity of algorithm

V = # of variables, E = # of edges

Height of lattice = 2 — each state vector can be updated at
most 2 *V times.

So each edge is processed at most 2 *V times, so we
process at most 2 * E *V elements in the worklist.

Cost to process a node: O(V)

Overall, algorithm takes O(EV2) time

Question

® (Can we generalize this algorithm and use it for more
analyses!?

Constant propagation

Step |: choose lattice (which values are you going to track
during symbolic execution)?

® Use constant lattice

Step 2: choose direction of dataflow (if executing symbolically,
can run program backwards!)

® Run forward through program

Step 3: create transfer functions

® How does executing a statement change the symbolic state?
Step 4: choose confluence operator

® What do do at merges? For constant propagation, use join

	Dataflow Analysis
	Program Optimizations
	Slide Number 3
	Slide Number 4
	Example: Constant Propagation and Dead Code Elimination
	Slide Number 6
	Exercise – Constant Propagation
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

