
1

CS406: Compilers
Spring 2020

Week 9: Local Optimizations (CSE, Register

Allocation), Instruction Scheduling

(Slides courtesy: Prof. Milind Kulkarni)

2

3

4

5

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{} add a b r1

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{} add a b r1

add r1 c r2

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

add a b r1

add r1 c r2
mov r1 r3

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

add a b r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

add a b r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

add a b r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

Example

6

Generated Code

(assembly)

3 Address Code Available expression(s) Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”,
“T1 + C”, “T3 + T2”}

add a b r1

add r1 c r2
mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

Downsides (CSE)

7

Downsides (CSE)

7

T1 and T3 compute the same expression. This can be handled by an

optimization called value numbering.

ST R5 D

Aliasing

8

• One of the biggest problems in compiler analysis is to

recognize aliases – different names for the same location

in memory

•Why do aliases occur?

•Pointers referring to the same location

•Function calls passing the same reference in two arguments

•Arrays referencing the same element

•Unions

•What problems does aliasing pose for CSE?
•when talking about “live” and “killed” values in optimizations like

CSE, we’re talking about particular variable names

•In the presence of aliasing, we may not know which variables get

killed when a location is written to

exercise: are T1 and T3 aliased in previous example?

9

Register Allocation

10

• Simple code generation (in CSE example): use a register

for each temporary, load from a variable on each read, store

to a variable at each write

•What are the problems?

•Real machines have a limited number of registers – one register

per temporary may be too many

• Loading from and storing to variables on each use may produce a

lot of redundant loads and stores

Register Allocation

11

•Goal: allocate temporaries and variables to registers to:

•Use only as many registers as machine supports

•Minimize loading and storing variables to memory (keep variables

in registers when possible)

•Minimize putting temporaries on stack (“spilling”)

Global vs. Local

12

•Same distinction as global vs. local CSE
•Local register allocation is for a single basic block

•Global register allocation is for an entire function (but not inter-

procedural – why?)

When we handle function calls, registers are pushed/popped from stack

13

14

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3) {}

• What is live in this code?
Comments

Used T3

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{T3}
{}

• What is live in this code?
Comments

Used T3

Used A, B Killed T3

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?
Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Liveness Example

15

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

{A, B}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Used B, C Killed A

16

17

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I) {}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{I}
{}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

{A, B}

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

{A, B}
{A}

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

mov 7 A

{A, B}
{A} A*

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B;

add r3 r1 r2
(spill r2 – farthest,
store if live and dirty)

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B;

add r3 r1 r2

F* E* A* add r1 r3 r1
(Free dead)

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B;

add r3 r1 r2

F* E* A* add r1 r3 r1
(Free dead)

F* E* G*
ld b r3;

add r4 r3 r3
(Load since B not in reg.

Free dead regs)

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B;

add r3 r1 r2

F* E* A* add r1 r3 r1
(Free dead)

F* E* G*
ld b r3;

add r4 r3 r3

H* G* add r1 r2 r1

Bottom-up register allocation - Example

18

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1 R2 R3 R4

add r1 r2 r3

add r1 2 r2

mov 7 A

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B;

add r3 r1 r2

F* E* A* add r1 r3 r1
(Free dead)

F* E* G*
ld b r3;

add r4 r3 r3

H* G* add r1 r2 r1

I* add r1 r3 r1

write r1

Exercise

19

A = B + C

C = A + B

T1 = B + C

T2 = T1 + C

D = T2

E = A + B

B = E + D

A = C + D

T3 = A + B

WRITE(T3)

Do bottom-up register allocation with 3 registers. When choosing a register to

allocate always choose the lowest numbered one available. When choosing

register to spill, choose the non-dirty register that will be used farthest in future.

If all registers are dirty, choose the one that is used farthest in future. In case of

a tie, choose the lowest numbered register.

Top-down register allocation -

Example

19

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

references to: A = 6, B = 7, C = 5, D = 3, E = 2, F = 2,

G = 2, H = 2, I = 2

Assign registers R1, R2, R3, R4 to B, A, C, D resp.

Keep some registers aside (assuming machine has

more registers available) for spill.

Interference Graph

15

• We can optimize top-down register allocation

• Use liveness info to assign more than one variable to

registers

• Draw a node for every variable

• Draw an edge between two nodes, if they appear together

in any set of live variables

• Assign variables that do not share an edge between them

to the same register

Interference Graph - example

15

A B C D

E F G

I

H

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

Live

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

{A, B}

{A}

Instruction Scheduling

23

Instruction Scheduling

24

Why do Instruction Scheduling?

25

Why do Instruction Scheduling?

Contd..

26

How to do Instruction Scheduling?

27

• Consider constraints on schedule:

•Data dependences between instructions

•Resource constraints

•Schedule instructions while respecting constraints

•List scheduling

•Height-based heuristic

28

Data dependence constraints

• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d

• Dependences between instructions prevent reordering

29

30

31

32

33

34

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Example

35

36

ALU0 ALU1 LD/ST

37

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

ALU0 ALU1 LD/ST

38

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ADD (1) ADD (2)

39

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

ALU0 ALU1 LD/ST

X

MUL

40

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

•LOADs and STOREs can execute on LD/ST unit only

ALU0 ALU1 LD/ST

X
ALU0 ALU1 LD/ST

X

LOAD STORE

41

42

43

44

List scheduling - Example

45

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

0 1, 2, 4 1*

1 2, 4

2 2, 4 2* 1

3 4

4 3, 4 3, 4 2

5 3

6 5 5 4

7

8 6 6 5

9 7 7 6

1

0

7

Cycle # Available

Instruction(s)

Scheduled

Instruction(s)

Completed

Instruction(s)

*an instruction from the

list of available

instructions is picked at

random and scheduled

46

47

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)
Height = 1

because latency of ST = 1

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)
Height = 2

because height = height of

child + latency = 1 + 1

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4) Height = 2

because height = height of

child + latency = 2 + 2

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)
Height = 3

because height =

height of child + latency

= 2 + 1

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

Height = 5

because height =

height of child +

latency = 3 + 2

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

Height = max(height of

all children) + latency

= max(3, 4) + 2 = 4 + 2

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

Height = height of

child + latency

= 4 + 2

48

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

49

Instruction Scheduling - Exercise

50

1: LD A R1

2: LD B R2

3: LD C R3

4: LD D R4

5: R5 = R1 + R2

6: R6 = R5 * R3

7: R7 = R1 + R6

8: R8 = R6 + R5

9: R9 = R4 + R7

10: R10 = R9 + R8

•2 ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available.

•Either of the ALUs can execute ADD (1 cycle). Only one of the ALUs can

execute MUL (2 cycles).

•LDs take up an ALU for 1 cycle and LD/ST unit for two cycles.

•STs take up an ALU for 1 cycle and LD/ST unit for one cycle.

i) Draw reservation tables, ii)DAG for the code shown iii) schedule using height

based list scheduling.

11: ST R10 E

12: ST R7 F

