
1

CS406: Compilers
Spring 2020

Week1: Overview, Structure of a compiler



2

Intro to Compilers

• Way to implement programming languages

• Programming languages are notations for 

specifying computations to machines

• Target can be an assembly code, executable, 

another source program etc.

CompilerProgram TargetCompilerProgram Target



3

What is a Compiler?

•Traditionally: Program that analyzes and translates from a high level 

language (e.g. C++) to low-level assembly language that can be 

executed by the hardware 

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {    

b = 3;
} 

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {    

b = 3;
} 

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {    

b = 3;
} 

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {    

b = 3;
} 

var a
var b
mov 3 a
mov 4 r1
cmpi a r1
jge l_e
mov 2 b
jmp l_d

l_e:mov 3 b
l_d:;done

int a, b;
a = 3;
if (a < 4) {

b = 2;
} else {    

b = 3;
} 



4

Compilers are translators

•Fortran

•C

•C++

•Java

•Text processing 

language

•HTML/XML

•Command & 

Scripting 

Languages

•Natural Language

•Domain Specific 

Language

Machine code

Virtual machine code

Transformed source 

code

Augmented source 

code

Low-level commands

Semantic components

Another language

translate



5

Compilers are optimizers

• Can perform optimizations to make a program more 

efficient

var a
var b
var c
mov a r1
addi 3 r1
mov r1 b
mov a r2
addi 3 r2
mov r2 c

int a, b, c;
b = a + 3;
c = a + 3;

var a
var b
var c
mov a r1
addi 3 r1
mov r1 b
mov r1 c



6

Why do we need compilers?

• Compilers provide portability

• Old days: whenever a new machine was built, programs had to be 

rewritten to support new instruction sets

• IBM System/360 (1964): Common Instruction Set Architecture 

(ISA) --- programs could be run on any machine which supported 

ISA

– Common ISA is a huge deal (note continued existence of x86)

• But still a problem: when new ISA is introduced (EPIC) or new 

extensions added (x86-64), programs would have to be rewritten

• Compilers bridge this gap: write new compiler for an ISA, and then 

simply recompile programs!



7

Why do we need compilers?

• Compilers enable high-performance and productivity

• Old: programmers wrote in assembly language, architectures were 

simple (no pipelines, caches, etc.)

• Close match between programs and machines --- easier to achieve 

performance

• New: programmers write in high level languages (Ruby, Python), 

architectures are complex (superscalar, out-of-order execution, 

multicore) 

• Compilers are needed to bridge this semantic gap

• Compilers let programmers write in high level languages and still get 

good performance on complex architectures



8

Semantic Gap

• Python code that actually runs on GPU

import pycuda
import pycuda.autoinit from pycuda.tools import
make_default_context
c = make_default_context()
d = c.get_device()
……

source: nvidia.com

Impossible without Compilers



9

Some common compiler types

• High level language          assembly language (e.g. gcc)

• High level language          machine independent bytecode (e.g. 

javac)

• Bytecode          native machine code (e.g. java’s JIT compiler)

• High level language            High level language (e.g. domain 

specific languages, many research languages)



10

HLL to Assembly

• Compiler converts program to assembly

• Assembler is machine-specific translator which converts assembly 

to machine code

add $7 $8 $9 ($7 = $8 + $9 ) => 000000 00111 01000 01001 00000 100000

• Conversion is usually one-to-one with some exceptions

• Program locations

• Variable names

Program Assembly Machine codeCompiler Assembler



11

HLL to Bytecode to Assembly

• Compiler converts program into machine independent 

bytecode

• e.g. javac generates Java bytecode, C# compiler generates CIL

• Just-in-time compiler compiles code while program executes

to produce machine code

– Is this better or worse than a compiler which generates machine 

code directly from the program?

Program Bytecode Machine codeCompiler JIT Compiler



12

HLL to Bytecode

• Compiler converts program into machine independent 

bytecode

• e.g. javac generates Java bytecode, C# compiler generates CIL

• Interpreter then executes bytecode “on-the-fly”

• Bytecode instructions are “executed” by invoking methods of 

the interpreter, rather than directly executing on the machine

• Aside: what are the pros and cons of this approach?

Program Bytecode Execute!Compiler Interpreter



13

Quick Detour: Interpreters

• Alternate way to implement programming 

languages

Interpreter
Data

OutputProgram

Data



14

CompilerProgram Target

Data

Output

Interpreter
Data

OutputProgram

Data

Online

Offline

these are the two types of language processing systems



15

History

• 1954: IBM 704

– Huge success

– Could do complex math

– Software cost > Hardware cost

Source: IBM Italy, 

https://commons.wikimedia.org/w/index.php?curid=48929471

How can we improve the efficiency of creating software?



16

• 1953: Speedcoding

– High-level programming language by John Backus

– Early form of interpreters

– Greatly reduced programming effort

– About 10x-20x slower

– Consumed lot of memory (~300 bytes = about 30% 

RAM)



17

Fortran I

• 1957: Fortran released

– Building the compiler took 3 years

– Very successful: by 1958, 50% of all software created 

was written in Fortran

• Influenced the design of:

– high-level programming languages e.g. BASIC

– practical compilers

Today’s compilers still preserve the structure of Fortran I



18

Structure of a Compiler

Scanner / Lexical 

Analysis

Parser / Syntax 

Analysis

Semantic Actions

Optimizer

Code Generator



19

Scanner

• A compiler starts by seeing only program text

• Analogy: Humans processing English text

Rama is a neighbor.

if ( a < 4) {
b = 5

}               



20

Scanner

• A compiler starts by seeing only program text

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’ 
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’



21

Scanner

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

• Analogy: Humans processing English text

– recognize words

• Rama, is, a, neighbor

• Additional details such as punctuations, capitalizations, blankspaces etc.

‘i’ ‘f’ ‘ ’ ‘(’ ‘a’ ‘<’ ‘4’ ‘)’ 
‘ ’ ‘{’ ‘\n’ ‘\t’ ‘b’ ‘=’ ‘5’

‘\n’ ‘}’



22

Scanner

• A compiler starts by seeing only program text

• Scanner converts program text into string of tokens

• But we still don’t know what the syntactic structure of the 

program is

if ( ID(a) OP(<) LIT(4) )

{ ID(b) = LIT(5) }



23

Exercise

Convert the following program text into tokens:

pos = initPos + speed * 60



24

Parser

• Converts a string of tokens into parse tree or abstract 

syntax tree

• Captures syntactic structure of the code (i.e. “this is an if
statement, with a then-block”

• Analogy: understand the English sentence structure

Rama is a good neighbor

if ( ID(a) OP(<) LIT(4) )

{ ID(b) = LIT(5) }



25

Parser

• Converts a string of tokens into parse tree or abstract 

syntax tree

• Captures syntactic structure of the code (i.e. “this is an if
statement, with a then-block”

if-stmt

stmt_list assign_stmt

b

5

b

5

a

4

<



26

Parser - Analogy

• Diagramming English sentences

Rama is a good neighbor

Noun      Verb Article    Adjective     Noun

ObjectSubject

Sentence



27

Exercise

Draw the syntax tree for the following program stmt:

pos = initPos + speed * 60



28

Semantic Actions

• Interpret the semantics of syntactic constructs

• Refer to actions taken by the compiler based on the 

semantics of program statements.

• Up until now, we have looked at syntax of a program

– what is the difference?



29

Syntax vs. Semantics

• Syntax: “grammatical” structure of language
– What symbols, in what order, is a legal part of the 

language?
• But something that is syntactically correct may mean nothing!

• “colorless green ideas sleep furiously”

• Semantics: meaning of language
– What does a particular set of symbols, in a particular 

order mean?
• What does it mean to be an if statement?

• “evaluate the conditional, if the conditional is true, execute the 
then clause, otherwise execute the else clause”



30

Semantic Actions - What

• What actions are taken by compiler based on the semantics 

of program statements ?

• Examples:

- bind variables to their scopes

- check for type inconsistencies

• Analogy:

- Raj said Raj has a big heart

- Raj left her home in the evening



31

Semantic Actions - How

• What actions are taken by compiler based on the semantics 

of program statements ?

– Building a symbol table

– Generating intermediate representations



32

Symbol Tables

• A list of every declaration in the program, along with other 

information

• Variable declarations: types, scope

• Function declarations: return types, # and type of 

arguments

Program Example
Integer ii;    
…                  
ii = 3.5;                
…                         
print ii;                  

Symbol Table

Name   Type   Scope

ii             int     global

…                              



33

Intermediate Representation

• Also called IR

• A (relatively) low level representation of the program

• But not machine-specific!

• One example: three address code

bge a, 4, done

mov 5, b

done: //done!

• Each instruction can take at most three operands 

(variables, literals, or labels)

• Note: no registers!



34

Exercise

Explain the semantics of the following program stmt:

pos = initPos + speed * 60



35

A Note on Semantics

• How do you define semantics?

– Static semantics: properties of programs

• All variables must have type

• Expressions must use consistent types

• Can define using attribute grammars

– Execution semantics: how does a program execute?

• Defined through operational or denotational semantics 

• Beyond the scope of this course!

– For many languages, “the compiler is the specification”



36

Optimizer

• Transforms code to make it more efficient

• Different kinds, operating at different levels

– High-level optimizations

• Loop interchange, parallelization

• Operates at level of AST, or even source code

– Scalar optimizations

• Dead code elimination, common sub-expression elimination

• Operates on IR

– Local optimizations

• Strength reduction, constant folding

• Operates on small sequences of instructions



37

Optimizer - Analogy

Analogy: reducing word usage  

Sunny felt a sense of having experienced it before  

when his bike broke down.

Exercise: is this rule correct?

X = Y * 0 is the same as X = 0

Dejavu



38

Code Generation

• Generate assembly from intermediate representation

– Select which instruction to use

– Select which register to use

– Schedule instructions

ld  a, r1
mov 4, r2
cmp r1, r2
bge done
mov 5, r3
st r3, b
done:

bge a, 4 done
mov 5, b
done: //done



39

Code Generation

• Generate assembly from intermediate representation

– Select which instruction to use

– Select which register to use

– Schedule instructions

mov 4, r1
ld  a, r2
cmp r1, r2
blt done
mov 5, r1
st r1, b
done:

bge a, 4 done
mov 5, b
done: //done



40

Structure of a Compiler

Scanner / Lexical 

Analysis

Parser / Syntax 

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

Use regular expressions to define tokens. Can then use 

scanner generators such as lex or flex.

Define language using context free grammars. Can then 

use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area 

(e.g. dataflow analysis frameworks)

Written manually. 



41

Structure of a Compiler

Scanner / Lexical 

Analysis

Parser / Syntax 

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

Use regular expressions to define tokens. Can then use 

scanner generators such as lex or flex.

Define language using context free grammars. Can then 

use parser generators such as yacc or bison.

Semantic routines done by hand. But can be formalized.

Written manually. Automation is an active research area 

(e.g. dataflow analysis frameworks)

Written manually. 



42

Front-end vs. Back-end

Scanner / Lexical 

Analysis

Parser / Syntax 

Analysis

Semantic Actions

Optimizer

Code Generator

Tokens

Syntax Tree

IR

IR

Source code

Executable

• Scanner + Parser + Semantic actions + (high 

level) optimizations called the front-end of a 

compiler 

front-end /

analysis

back-end /

synthesis

• IR level optimizations and code generation 

(instruction selection, scheduling, register 

allocation) called the back-end of a compiler 

• Can build multiple front-ends for a particular 

back-end

•e.g. gcc or g++ or many front-ends which 

generate CIL

• Can build multiple back-ends for a particular 

front-end

•gcc allows targeting different architectures



43

Programming Language Design 

Considerations

• Why are there so many programming languages?

• Why are there new languages?

• What is a good programming language?



44

• Compiler and language designs influence each 

other

– Higher level languages are harder to compile

• More work to bridge the gap between language and assembly

– Flexible languages are often harder to compile

• Dynamic typing (Ruby, Python) makes a language very flexible, 

but it is hard for a compiler to catch errors (in fact, many simply 

won’t)

– Influenced by architectures

• RISC vs. CISC



45

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman: 

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley 

2007

– Chapter 1 (Sections: 1.1 to 1.3, 1.5)

• Fisher and LeBlanc: Crafting a Compiler with C

– Chapter 1 (Sections 1.1 to 1.3, 1.5)

Suggested Reading


