1)

Do bottom-up register allocation with 3 registers. When choosing a register to allocate always
choose the lowest numbered one available. When choosing register to spill, choose the non-dirty
register that will be used farthest in future. If all registers are dirty, choose the one that is used
farthest in future. In case of a tie, choose the lowest numbered register.

1. A=B + C
2. C=A+8B
3. T1 =B+ C
4, T2 =Tl + C
5. D =T2
6. E=A+B
7. B=E +D
8. A=C+D
9. T3 =A+B
10. WRITE(T3)

Ans:

Instruction Live

1 |[A=B+C { A, B}

2 |[C=A+8B { A, B, C}

3 |T1 =B+ C { A, B, C, T1 }

4 |[T2=T1+C {A B, C, T2}

5 |D=T2 {A B, C, D}

6 |[E=A+8B {C, D, E}

7 |[B=E+D {B, C, D}

8 |[A=C+0D {A B}

9 [T3 =A+8B {13}

10 | WRITE(T3) {}

1. A=B+C

Code generated Register Map Comments

(* indicates dirty register)

LD B R1
LD C R2
ADD R1 R2 R2

R1: B

R2: A*

ensure(B) returns R1, associates B with R1
and generates LD B R1,

ensure(C) returns R2, associates C with R2
and generates LD C R2

free(R2) marks R2 as free

(because C is dead)

allocate(A) returns R2, associates R2 with A
generate code for ADD

mark R2 as dirty

2.C=A+8B

Code generated Register Map Comments
(* indicates dirty register)

ADD R2 R1 R3 R1:B R2: A* R3:C* e ensure(A) returns R2
e ensure(B) returns R1
e allocate(C) returns R3, associates R3 with C
e generate code for ADD
e mark R3 as dirty

3.T1=B+C

Code generated Register Map Comments

(* indicates dirty register)

ADD R1 R3 R1 R1:T1* R2:A* R3:C* e ensure(B) returns R1
e ensure(C) returns R3
e allocate(T1) returns R1, associates R1 with
T1 (No register is free. Chooses R1 to free
since R1 is non-dirty and is used farthest in
future (in instruction 6))
e generate code for ADD
e markR1 as dirty
4.T2=T1+C
Code generated Register Map Comments

(* indicates dirty register)

ADD R1 R3 R1 R1: T2* R2:A* R3:C* e ensure(T1) returns R1
e ensure(C) returns R3
e free(T1) marks R1 as free
(No Store despite R1 is dirty because T1 is dead)
e allocate(T2) returns R1, associates R1 with C
e generate code for ADD
e markR1 as dirty

5.D=T2

Code generated Register Map Comments

(* indicates dirty register)

R1:D* R2:A* R3:C*

e ensure(T2) returns R1

e free(T2) marks R1 as free

(No Store despite R1 is dirty because T2 is dead)
e allocate(D) returns R1, associates R1 with D
e No code generated

e markR1 as dirty

6.E=A+B

Code generated

Register Map

(* indicates dirty register)

Comments

ST R3 C R1:D* R2:E* R3: e ensure(A) returns R2
LD B R3 e ensure(B) returns R3
ADD R2 R3 R2 (No register is free. All registers dirty. So, a
call to allocate(B) chooses R3 among R1 and
R3 to free. R3 is chosen because C is used
farthest in future. free(R3) generates store
because Cis live. Associates R3 with B.
Generates Load from B into R3)
e free(A) marks R2 as free
(No Store despite R2 is dirty because A is dead)
o free(B) marks R3 as free
(because B is dead)
e allocate(E) returns R2, associates R2 with E
e Generate code for ADD
e markR2 as dirty
7.B=E+D
Code generated Register Map Comments

(* indicates dirty register)

ADD R2 R1 R2 R1:D* R2:B* R3: e ensure(E) returns R2
e ensure(D) returns R1
e free(E) marks R2 as free
(No Store despite R2 is dirty because E is dead)
e allocate(B) returns R2, associates R2 with B
e Generate code for ADD
e markR2 as dirty
8.A=C+D
Code generated Register Map Comments
(* indicates dirty
register)
LD C R3 R1: A* R2:B* R3: e ensure(C) returns R3, associates R3 with C,
ADD R3 R1 R1 generates load from C into R3

e ensure(D) returns R1
e free(C) marks R3 as free (C is dead)
o free(D) marks R1 as free

(no store despite R1 being dirty because D is dead)
e allocate(A) returns R1, associates R1 with A
e Generate code for ADD
e markR1 as dirty

9.T3=A+8B

Code generated

Register Map

(* indicates dirty register)

Comments

ADD R1 R2 R1

R1:T3* R2: R3:

e ensure(A) returns R1
e ensure(B) returns R2
o free(A) marks R1 as free
(A is dead, No store.)
e free(B) marks R2 as free
(B is dead. No store)
e allocate(T3) returns R1, associates R1 with T3
e Generate code for ADD
e markR1 as dirty

10. WRITE(T3)

Code generated

Register Map

(* indicates dirty register)

Comments

WRITE(R1) R1: R2: R3: e ensure(T3) returns R1
e free(T3) marks R1 as free
e Generate code for WRITE
Summarizing:
Instruction Live Registers Code
R1 R2 R3
1 |A=B+C|{A, B} B A* LD B R1
LD C R2
ADD R1 R2 R2
2 |[C=A+B|{A, B, C} B A* C* ADD R2 R1 R3
3 |T1=B+ |{A,B, C, T1 T1* | A* Cc* ADD R1 R3 R1
C }
4 T2 =T1+|{ A, B, C, T2 T2* | A* Cc* ADD R1 R3 R1
C }
5 |D=T2 {A, B, C, D} |D* A* C*
6 |[E=A+B|{C, D, E} D* E* ST R3 C
LD B R3
ADD R2 R3 R2
7 |B=E+D|{B, C, D} D* B* ADD R2 R1 R2
8 |[A=C+D|{A, B} A* B* LD C R3
ADD R3 R1 R1
9 |T3=A+ |{ T3} T3* ADD R1 R2 R1
B
10 | WRITE(T3) | { } WRITE R1

Il. Two ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available. Either of the ALUs can
execute ADD (1 cycle). Only one of the ALUs can execute MUL (2 cycles). LDs take up an ALU for 1 cycle
and LD/ST unit for two cycles. STs take up an ALU for 1 cycle and LD/ST unit for one cycle. i) Draw
reservation tables, ii) DAG for the code shown iii) schedule using height based list scheduling.

Ans:
(i)
ADD
ALUL | ALU2 | LD/ST
v
ALUL | ALU2 | LD/ST
v

ADDs take up either of the ALUs
and occupy that ALU for a single
cycle. Hence, we show two tables
and a single row of occupancy.

1. LD AR1

2. LD B R2

3. LD C R3

4. LD D R4

5. R5 = R1 + R2
6. R6 = R5 * R3
7. R7 = R1 + R6
8. R8 = R6 + R5
9. R9 = R4 + RY7
10. R10 = R9 + R8
11. ST R1@ E
12. ST R7 F

Reservation Tables

MUL

ALU1 | ALU2 | LD/ST

MULs can execute on only one of
the ALUs. Hence, we show a single
table. Here, | assume that only
ALU1 can execute MUL. Further,
MULs take up two cycles to
complete. Hence, we show two
rows of occupancy. The ALUs are
fully pipelined. This means that
while ALU1 is executing the second
cycle of mull, it is also available to
execute another instruction (mul2
/ addl / 1d1 / st1).

LD
ALUL | ALU2 | LD/ST
v
v
v
ALU1 | ALU2 | LD/ST
v
4
v

LDs take up an ALU (either of the
ALUs) for one cycle and LD/ST unit
for two cycles. Hence, we show
two tables and three rows of
occupancy.

ST

ALUL | ALU2 | LD/ST

ALU1 | ALU2 | LD/ST

5Ts take up an ALU (either of the

ALUs) for one cycle and LD/ST unit
for one cycle. Hence, we show two
tables and two rows of occupancy.

(i) DAG

(iii) DAG with heights assigned to nodes (height of a leaf node = latency of that instruction. Height of
an interior node = maximum of heights of all children + latency of that instruction)

e E>?
|

Cycle | Awailable Scheduled Completed ALUl1 | ALU2 | LD | Comments

Instructions | Instructions | Instructions IsT

0 1,2,3,4 1 - 1 1 and 2 have max height. 1 (picked at
random) scheduled.

1 2,3,4 - - 1

2 2,3,4 2 - 2 1 2 scheduled to utilize available ALUs

3 3,4 - 1 2

4 3,4 3 - 3 2 3 scheduled to utilize available ALUs

5 4.5 5 2 5 3 5 becomes available as 1 and 2 are
complete. 4 has to wait till the last cycle
of 3 is executed.

6 4 4 5 4 3 5 finishes. 4 can now be scheduled.

7 6 6 3 6 4 3 finishes. 6 becomes available. Takes two
cycles on fully-pipelined ALU1.

8 4 ALU1is also executing 6 in its pipeline.

9 7.8 7.8 4,6 7 8 4 and 6 finish. As a result, 7 and 8 become
available. Both can be scheduled on
different ALUs.

10 9,12 9,12 7.8 9 12 7 and 8 finish. As a result, 9 and 12 are
available. Both can be scheduled.

11 10 10 9 10 12 | 9finishes. 10becomes available.

12 11 11 10,12 11 10 and 12 finish. 11 becomes available.

13 11

14 11 11 finishes.

