
CS406: Compilers
Programming Assignment 2: Parser, Due: 13/2/2020

1 Introduction
Your goal in this step is to generate the parser for your programming language’s grammar. By the end of
this step your compiler should be able to take a source file as the input and parse the content of that file
returning "Accepted" if the file’s content is correct according to the grammar or "Not Accepted" if it is not.

Now the scanner created in the first step will be modified to feed the parser. Instead of printing the tokens,
the scanner has to return what token is recognized in each step.

2 Background
The job of a parser is to convert a stream of tokens (as identified by the scanner) into a parse tree: a
representation of the structure of the program. So, for example, a parser will convert:

A := B + 4

into a tree that looks something like:

This tree may look confusing, but it fundamentally captures the structure of an assignment statement:
an assignment statement is an assignment expression followed by a semicolon. An assignment expression
is decomposed into an identifier followed by an assignment operation followed by an expression. That
expression is decomposed into a bunch of primary terms that are combined with addition and subtraction,
and those primary terms are decomposed into a bunch of factors that are combined with multiplication and
division (this weird decomposition of expressions captures the necessary order of operations). Eventually,
those factors become identifiers or constants.

1

One important thing to note is that the leaves of the tree are the tokens of of the program. If you read the
leaves of the tree left to right (ignoring lambdas, since just represent the empty string), you get:

IDENTIFIER ASSIGN_OP IDENTIFIER PLUS_OP INTLITERAL

Which is exactly the tokenization of the input program!

2.1 Context-free grammars
To figure out how each construct in a program (an expression, an if statement, etc.) is decomposed into
smaller pieces and, ultimately, tokens, we use a set of rules called a context-free grammar. These rules tell us
how constructs (which we call “non-terminals”) can be decomposed and written in terms of other constructs
and tokens (which we call “terminals”).

2.2 Micro
The context-free grammar that defines the structure of Micro (the name of your programming language)
is:

/∗ Program ∗/
program −> PROGRAM id BEGIN pgm_body END
id −> IDENTIFIER
pgm_body −> dec l func_dec la ra t i ons
dec l −> st r ing_dec l de c l | var_decl de c l | empty

/∗ Globa l S t r ing Dec lara t ion ∗/
s t r ing_dec l −> STRING id := s t r ;
s t r −> STRINGLITERAL

/∗ Var iab l e Dec lara t ion ∗/
var_decl −> var_type i d_ l i s t ;
var_type −> FLOAT | INT
any_type −> var_type | VOID
i d_ l i s t −> id id_ta i l
i d_ta i l −> , id i d_ta i l | empty

/∗ Function Paramater L i s t ∗/
param_decl_list −> param_decl param_decl_tail | empty
param_decl −> var_type id
param_decl_tail −> , param_decl param_decl_tail | empty

/∗ Function Dec la ra t i ons ∗/
f unc_dec la ra t i ons −> func_decl func_dec la ra t i ons | empty
func_decl −> FUNCTION any_type id (param_decl_list) BEGIN func_body END
func_body −> dec l s tmt_l i s t

/∗ Statement L i s t ∗/
s tmt_l i s t −> stmt s tmt_l i s t | empty
stmt −> base_stmt | i f_stmt | for_stmt
base_stmt −> assign_stmt | read_stmt | write_stmt | return_stmt

/∗ Basic Statements ∗/
assign_stmt −> assign_expr ;
ass ign_expr −> id := expr
read_stmt −> READ (i d_ l i s t) ;
write_stmt −> WRITE (i d_ l i s t) ;
return_stmt −> RETURN expr ;

/∗ Express ions ∗/

2

expr −> expr_pre f ix f a c t o r
expr_pre f ix −> expr_pre f ix f a c t o r addop | empty
f a c t o r −> fac t o r_pr e f i x post f ix_expr
f a c t o r_pr e f i x −> fac t o r_pr e f i x post f ix_expr mulop | empty
post f ix_expr −> primary | ca l l_expr
ca l l_expr −> id (expr_ l i s t)
exp r_ l i s t −> expr exp r_ l i s t_ta i l | empty
exp r_ l i s t_ta i l −> , expr exp r_ l i s t_ta i l | empty
primary −> (expr) | id | INTLITERAL | FLOATLITERAL
addop −> + | −
mulop −> ∗ | /

/∗ Complex Statements and Condit ion ∗/
i f_stmt −> IF (cond) dec l s tmt_l i s t e l s e_part FI
e l se_part −> ELSE dec l s tmt_l i s t | empty
cond −> expr compop expr
compop −> < | > | = | != | <= | >=

init_stmt −> assign_expr | empty
incr_stmt −> assign_expr | empty

for_stmt −> FOR (init_stmt ; cond ; incr_stmt) dec l s tmt_l i s t ROF

So this grammar tells us, for example, that an if_stmt looks like the keyword IF followed by an open
parenthesis, followed by a cond expression followed by some decl (declarations) followed by a stmt_list
followed by an else_part followed by the keyword FI.

An input program matches the grammar (we say “is accepted by” the grammar) if you can use the rules of
the grammar (starting from program) to generate the set of tokens that are in the input file. If there is no
way to use the rules to generate the input file, then the program does not match the grammar, and hence is
not a syntactically valid program.

3 Building a Parser
There are many tools that make it relatively easy to build a parser for a context free grammar (in class,
we will talk about how these tools work): all you need to do is provide the context-free grammar and some
actions to take when various constructs are recognized. The tools we recommend using are:

• bison (this is a tool that is meant to work with scanners built using flex). Note that integrating a
flex scanner with bison requires a little bit of work. The process works in several steps that seem
interlocking:

1. Define your token names as well as your grammar in your bison input file (called something like
microParser.y)

2. Run bison -d -o microParser.cpp on microParser.y, it will create two output files: microParser.cpp
(which is your parser) and microParser.tab.hpp (which is a header file that defines the token
names)

3. In your scanner file (called something like microLexer.l), add actions to each of your token
regexes to simply return the token name (from your .y file) you defined. (Warning: make sure
that you don’t have a token named BEGIN even if the regex matches the string “BEGIN”, because
that will cause weird, hard-to-find errors. Call that token something like _BEGIN.) To make sure
that your scanner compiles, you will need to put #include “microParser.tab.hpp” in the part
of your .l file where you can include C code.

4. Run flex on microLexer.l to produce lex.yy.cpp

3

5. In another file, write a main function (this file will also need to include microParser.tab.hpp).
Your main function should open the input file and store the file handle in a variable called yyin.
Calling yyparse() will then run your parser on the file associated with yyin.

6. Compile together all of microParser.cpp, lex.yy.cpp, and your main function to build your
compiler.

• ANTLR (this is the same tool that can also build lexers). You should define your grammar in the same
.g4 file in which you defined your lexer.

1. Running ANTLR on that .g4 file will produce both a Lexer class and a Parser class.

2. In your main file, rather than initializing a lexer and then grabbing tokens from it (as you may
have done in step 1), you instead initialize a lexer, initialize a CommonTokenStream from that
lexer, then initialize a parser with the CommonTokenStream you just created.

3. You can then call a function with the same name as your top-level construct (probably program)
on that parser to parse your input.

4 What you need to do
The grammar for Micro is given above. All you need to do is have your parser parse the given input file and
print Accepted if the input file correctly matches the grammar, and Not Accepted if it doesn’t (i.e., the
input file cannot be produced using the grammar rules).

In bison, you can define a function called yyerror (look at the documentation for the appropriate signature)
that is called if the parser encounters an error.

In antlr, this is a little more complicated. You will need to create a new “error strategy” class (extend
DefaultErrorStrategy) that overrides the function reportError. You can then set this as the error handler
for your parser by calling setErrorHandler on your parser before starting to parse.

Sample inputs and outputs: inputs and outputs.

5 What you need to submit
• All of the necessary code for your compiler that you wrote yourself. You do not need to include the

ANTLR jar files if you are using ANTLR.

• A Makefile with the following targets:

1. compiler: this target will build your compiler

2. clean: this target will remove any intermediate files that were created to build the compiler

3. team: this target will print the same team information that you printed in step 0.

• A shell script (this must be written in bash) called runme that runs your scanner. This script should
take in two arguments: first, the input file to the scanner and second, the filename where you want to
put the scanner’s output. You can assume that we will have run make compiler before running this
script.

While you may create as many other directories as you would like to organize your code or any intermediate
products of the compilation process, both your Makefile and your runme script should be in the root
directory of your repository.

Do not submit any binaries. Your git repo should only contain source files; no products of compilation.

You should tag your programming assignment submission as submission

4

https://hegden.github.io/cs406/homeworks/PA2/inputs.zip
https://hegden.github.io/cs406/homeworks/PA2/outputs.zip

	Introduction
	Background
	Context-free grammars

	Building a Parser
	What you need to do
	What you need to submit

