
CS323: Compilers
Spring 2023

Week 9: Functions, Local Optimizations

CS323, IIT Dharwad 1

Recap

CS323, IIT Dharwad 2

• A function call or invocation is termed an activation

• Calls to functions in a program form activation tree

• Postorder traversal of the tree shows return sequence i.e.
the order in which control returns from functions

• Preorder traversal of the tree shows calling sequence

• In a sequential program, at any point in time, control
of execution is in any one activation

• All the ancestors of that activation are active i.e. have not
returned

Activation

CS323, IIT Dharwad 3

• Activations are managed through the help of
control stack

• A function call (activation) results in allocating a
chunk of memory called activation record or frame
on the stack (also called stack frame)

Activation

CS323, IIT Dharwad 4

Activation Record

• A sub-segment of memory on the stack
• Special registers $rbp and $rsp track the bottom and top of

the stack frame. These are the names in x86 architecture.

• $rbp – base pointer or frame pointer (fp)

• $rsp – stack pointer (sp)

5CS323, IIT Dharwad

Activation Record - Example

6

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp
main() Activation record

/ frame

CS323, IIT Dharwad

Activation Record - Example

7

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

CS323, IIT Dharwad

Activation Record - Example

8

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

bar()

CS323, IIT Dharwad

Activation Record - Example

9

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

sp

main()

foo()

CS323, IIT Dharwad

Activation Record - Example

10

main() {
…
foo();
…

}

foo() {
bar();
…
baz();

}

Stack

fp

main()

foo()

sp
baz()

CS323, IIT Dharwad

Activation Record – Example (Recursive
Functions)

11

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp

fact(2)

fact(1)

fact(0)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for fact n=0

CS323, IIT Dharwad

Activation Record – Example (Recursive
Functions)

12

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp

fact(2)

fact(1)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for n=0 popped off. 1 Returned.
CS323, IIT Dharwad

Activation Record – Example (Recursive
Functions)

13

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)

sp
fact(2)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for n=1 popped off. 1 Returned.
CS323, IIT Dharwad

Activation Record – Example (Recursive
Functions)

14

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()

fact(3)
sp

Stack frame for fact n=3

Stack frame for n=2 popped off. 2 Returned.
CS323, IIT Dharwad

Activation Record – Example (Recursive
Functions)

15

main() {
…
fact(3);
…

}

fact(int n) {
if (n=0) return 1
return n*fact(n-1)
}

Stack

fp

main()
sp

Stack frame for n=3 popped off. 6 Returned.
CS323, IIT Dharwad

Activation Record

• What happens when a function is called?

1. fp and sp get adjusted

2. Memory for the activation record is allocated on stack

• The size of the memory allocated depends on local variables used by
the called function (consult function’s symbol table for this)

3. Each invocation of a function has its own instantiation of
local variables

• When the function call returns:

• Memory for the activation record is destroyed

16CS323, IIT Dharwad

Activation Record

• What is stored in the activation record?

Depends on the language being implemented:
• Temporaries

• Local vars

• Saved registers

• Return address, previous fp

• Return value

• Actual Params

• Who stores this information?
• Caller

• Callee
17

together execute calling sequence and return
sequence

CS323, IIT Dharwad

Application Binary Interface (ABI)

• How is data organized on the activation record?

• ABI is the specification on how data is provided to functions

• Caller saves or callee saves

• ABI is meant to deliver interoperability between different
compilers

• Compile the function using one compiler to create an object code,
Link object code with other code compiled using a different compiler

18

forms the calling convention
CS323, IIT Dharwad

Typical Activation Record

19

Stack

..

fp arg 1

arg 2

arg n
(Higher address)

(Lower address)

local var 1

local var 2
..

local var m

return address

saved registers

sp

Previous frame

current frame

Callee accesses arguments using +ve offset
from FP:
argument1 = memory[FP]
argument2 = memory[FP+1] ..

Callee accesses local variables using –ve
offset from FP:
local var 1=memory[FP-1]
local var 2=memory[FP-2]

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

• When main calls function foo
1. The following are pushed on to the stack:

1. foo’s arguments
2. Space to hold foo’s return value
3. Address of the next instruction executed (in main) when foo

returns (return address)
4. Current value of $rbp (frame pointer)

$rsp is automatically updated (decremented) to point to current top of
the stack.

2. $rbp is assigned the value of $rsp

20

main() {
…
foo();
…

}

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

21

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

zReturn value
1234ABCD

main’s fp

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

22

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

1234ABCD

main’s fp

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

23

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

24

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

main’s
frame

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

25

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z
x

2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

return;

main’s
frame

1234ABCDSaved frame ptr
foo’s fp

CS323, IIT Dharwad

Function call: Peeking at Activation
Record

26

main() {
z=foo(x, 2*y);
return;

}

int foo(int a, int b) {
int l1, l2
l1=a;
l2=b;
return l1+l2;

}

Stack

z

1234ABCD

x
2*y

Return value

act. param1
act. param2

~ ~

code

0000ABCD

0000ABCDret. addr.

1234ABCD

main’s fp

Saved frame ptr
foo’s fp

l1
l2

local var1

local var2

main’s
frame

foo’s
frame

CS323, IIT Dharwad

Function calls – Register Handling

• Did not use registers in the previous example (for parameter
passing)

• Registers are faster than memory. So, compiler should keep
parameters in registers whenever possible

• Modern calling convention places first few arguments in registers
(arg1 in r1, arg2 in r2, arg3 in r3…) and the remaining in memory.

• In x86 C-ABI, first 6 arguments are passed in registers

• What if callee wants to use registers r1, r2, r3 etc. for local
computation? Callee must save the registers in its stack frame.

27CS323, IIT Dharwad

Function calls – Register Handling

• Two options: caller saves or callee saves

• Caller Saves
• Caller pushes all the registers it is using on to the stack before

calling the function

• Restores the registers after the function returns

• Callee Saves
• Callee pushes all the registers it is going to use on the stack

immediately after being called

• Restores the registers just before it returns

28CS323, IIT Dharwad

29CS323, IIT Dharwad

Activation Record – Return Address and
Return Value

• Callee must be able to return to the caller when done

• Return address is the address of the instruction following the
function call

• Return address can be placed on the stack or on register

• The call instruction on modern machines places the return
address in a specific register

• Return value is placed in a specific register by the callee function

30CS323, IIT Dharwad

This week

• Functions continued

• Local Optimizations

CS323, IIT Dharwad 31

32CS323, IIT Dharwad

• SP is manipulated through push and pop
instructions

33

Push x:
stack_pointer++
Memory[stack_pointer] = x

Pop x:
x = Memory[stack_pointer]
stack_pointer--

CS323, IIT Dharwad

Stack Pointer

Question ?

Where are the command-line arguments stored?

How about environment variables such as
LD_LIBRARY_PATH and PATH?

36CS323, IIT Dharwad

Local Optimizations

CS323, IIT Dharwad 39

40CS323, IIT Dharwad

41

There is a better instruction available!

CS323, IIT Dharwad

42

ADD C, A, E LD C R4

LD A R5

ADD R4 R5 R6

ST R6 E

This LD is redundant

This LD is redundant

CS323, IIT Dharwad

43CS323, IIT Dharwad

44CS323, IIT Dharwad

45CS323, IIT Dharwad

46CS323, IIT Dharwad

47CS323, IIT Dharwad

48

Get the data present at address in R2 and put it in R1

CS323, IIT Dharwad

49CS323, IIT Dharwad

50CS323, IIT Dharwad

51CS323, IIT Dharwad

52CS323, IIT Dharwad

53

Maximal sequence of instructions that are
executed one after another (i.e. there are
no jump instructions OR no instruction is
the target of a jump)

Local optimizations are done on basic blocks. Global optimizations on control flow graphs
(CFGs), where the basic blocks are the nodes of the graph. Then, there are inter-procedural
optimizations, which span function calls. Later on CFGs and other kinds of optimizations.

CS323, IIT Dharwad

54CS323, IIT Dharwad

55CS323, IIT Dharwad

Example

56

Generated Code

(assembly)

3 Address Code Available expression(s)

Killed

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”,
“T1 + C”, “T3 + T2”}

add r1 r2 r1

ld c r5;add r1 r5 r2

mov r1 r3

add r1 r2 r5
st r5 c

ld c r5;add r1 r5 r4

add r3 r2 r6
st r6 d

ld a r1;
ld b r2;

CS323, IIT Dharwad

Downsides (CSE)

57

T1 and T3 compute the same expression. This can be handled by an

optimization called value numbering.

ST R5 D

CS323, IIT Dharwad

Aliasing

58

• One of the biggest problems in compiler analysis is to

recognize aliases – different names for the same location

in memory

•Why do aliases occur?

•Pointers referring to the same location

•Function calls passing the same reference in two arguments

•Arrays referencing the same element

•Unions

•What problems does aliasing pose for CSE?
•when talking about “live” and “killed” values in optimizations like

CSE, we’re talking about particular variable names

•In the presence of aliasing, we may not know which variables get

killed when a location is written to

exercise: are T1 and T3 aliased in previous example?

CS323, IIT Dharwad

59CS323, IIT Dharwad

Single assignment form: a variable is assigned only
once i.e. appears only once in LHS.

60CS323, IIT Dharwad

Single assignment form and its use in
local optimizations

x=z+y
a=x
x=2*x

b=z+y
a=b
x=2*b

replace x with b

x=z+y
...
x=z+y

Neither z nor y can appear on
the LHS here in single
assignment form.

So, can be sure that this z+y is the same expression as
earlier. In the original code, if z or y were assigned to in
between the two expressions, then we would have used
different names, say, z1=..; y1=; then the last expression
would have to be rewritten as x=z1+y1.

Aids dead code elimination: if the variable is never used later, can safely
remove the statement where the variable is defined/assigned to.

Aids copy propagation: can replace all the uses of a variable downstream

Aids CSE:

Example – Local Optimizations

61

a=x**2
b=3
c=x
d=c*c
e=b*2
f=a+d
g=e*f

CS323, IIT Dharwad

Example – Local Optimizations

• Algebraic simplification – exploiting mathematical
properties of operators involved

62

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

CS323, IIT Dharwad

Example – Local Optimizations

• Copy and constant propagation

63

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=3<<1
f=a+d
g=e*f

CS323, IIT Dharwad

Example – Local Optimizations

• Constant folding

64

a=x*x
b=3
c=x
d=c*c
e=b<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=3<<1
f=a+d
g=e*f

a=x*x
b=3
c=x
d=x*x
e=6
f=a+d
g=e*f

CS323, IIT Dharwad

Example – Local Optimizations

• CSE

65

a=x*x
b=3
c=x
d=x*x
e=6
f=a+d
g=e*f

a=x*x
b=3
c=x
d=a
e=6
f=a+d
g=e*f

CS323, IIT Dharwad

Example – Local Optimizations

• Copy and Constant Propagation

66

a=x*x
b=3
c=x
d=a
e=6
f=a+d
g=e*f

a=x*x
b=3
c=x
d=a
e=6
f=a+a
g=6*f

CS323, IIT Dharwad

Example – Local Optimizations

• Dead code elimination

67

a=x*x
b=3
c=x
d=a
e=6
f=a+a
g=6*f

a=x*x
f=a+a
g=6*f

Anything else?

a=x*x
f=2*a
g=6*f

a=x*x
f=2*a
g=12*a

CS323, IIT Dharwad

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Recap
	Slide 3: Activation
	Slide 4: Activation
	Slide 5: Activation Record
	Slide 6: Activation Record - Example
	Slide 7: Activation Record - Example
	Slide 8: Activation Record - Example
	Slide 9: Activation Record - Example
	Slide 10: Activation Record - Example
	Slide 11: Activation Record – Example (Recursive Functions)
	Slide 12: Activation Record – Example (Recursive Functions)
	Slide 13: Activation Record – Example (Recursive Functions)
	Slide 14: Activation Record – Example (Recursive Functions)
	Slide 15: Activation Record – Example (Recursive Functions)
	Slide 16: Activation Record
	Slide 17: Activation Record
	Slide 18: Application Binary Interface (ABI)
	Slide 19: Typical Activation Record
	Slide 20: Function call: Peeking at Activation Record
	Slide 21: Function call: Peeking at Activation Record
	Slide 22: Function call: Peeking at Activation Record
	Slide 23: Function call: Peeking at Activation Record
	Slide 24: Function call: Peeking at Activation Record
	Slide 25: Function call: Peeking at Activation Record
	Slide 26: Function call: Peeking at Activation Record
	Slide 27: Function calls – Register Handling
	Slide 28: Function calls – Register Handling
	Slide 29
	Slide 30: Activation Record – Return Address and Return Value
	Slide 31: This week
	Slide 32
	Slide 33: Stack Pointer
	Slide 35
	Slide 36: Question ?
	Slide 39: Local Optimizations
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Example
	Slide 57: Downsides (CSE)
	Slide 58: Aliasing
	Slide 59
	Slide 60: Single assignment form and its use in local optimizations
	Slide 61: Example – Local Optimizations
	Slide 62: Example – Local Optimizations
	Slide 63: Example – Local Optimizations
	Slide 64: Example – Local Optimizations
	Slide 65: Example – Local Optimizations
	Slide 66: Example – Local Optimizations
	Slide 67: Example – Local Optimizations

