CS323: Compilers

Spring 2023

Week 9: Functions, Local Optimizations

Recap

Activation

* A function call or invocation is termed an activation

e Calls to functions in a program form activation tree

e Postorder traversal of the tree shows return sequence i.e.
the order in which control returns from functions

* Preorder traversal of the tree shows calling sequence

* In a sequential program, at any point in time, control
of execution is in any one activation

e All the ancestors of that activation are active i.e. have not
returned

Activation

 Activations are managed through the help of
control stack

* A function call (activation) results in allocating a
chunk of memory called activation record or frame
on the stack (also called stack frame)

Activation Record

* A sub-segment of memory on the stack

* Special registers $rbp and $rsp track the bottom and top of
the stack frame. These are the names in x86 architecture.

— »high address (0x1234ABCD)

StaCk » pI 0D
________________ I—-» $rsp

* $rbp - base pointer or frame pointer (fp)

* $rsp - stack pointer (sp)

Sp

Activation Record - Example

Stack

main()

CS323, IIT Dharwad

Activation record
/ frame

main() {

Eoo();

foo() {
bar();

BaZ();

Activation Record - Example

Stack
rac main() {
main() ¥oo();
tp
foo() }
Sp
foo() {
bar();
BaZ();

CS323, IIT Dharwad 7

Sp

Activation Record - Example

Stack nain() {
main() Eoo();
foo() } h
bar() foo() {

— bar();
BaZ();

CS323, IIT Dharwad 8

Activation Record - Example

Stack
rac main() {
o main() EOO();
foo() }
sp
foo() {
bar();
—>Ea2();

CS323, IIT Dharwad 9

Sp

Activation Record - Example

Stack

main()

foo()

baz()

CS323, IIT Dharwad

main() {

Eoo();

foo() {
bar();

—»BaZ();

10

Activation Record — Example (Recursive

fp—

sp———

Stack

main()

fact(3)

fact(2)

fact(1)

fact(0)

Functions)

Stack frame for fact n=3

Stack frame for fact n=2

Stack frame for fact n=1

Stack frame for fact n=0

main() {
¥act(3);

¥

fact(int n) {
if (n=0) return 1
return n*fact(n-1)

¥

Activation Record — Example (Recursive
Functions)

Stack .
main() A

main() ¥act(3);

fact (3) Stack frame for fact n=3 }

fact(2) |stack frame for fact n=2 fact(int n) {

-Fp Fact(l) Stack frame for fact n=1 1t (n=@) return 1
sp—— return n*fact(n-1)
¥

Stack frame for n=0 popped off. 1 Returned.

Activation Record — Example (Recursive
Functions)

Stack

main() {

main() ¥act(3);

fact (3) Stack frame for fact n=3 }

fact(2) |stack frame for fact n=2 fact(int n) {

if (n=0) return 1
return n*fact(n-1)

¥

sp———

Stack frame for n=1 popped off. 1 Returned.

Activation Record — Example (Recursive
Functions)

Stack

main() {

main() ¥act(3);

.F >
P fact (3) Stack frame for fact n=3 }
sp——
fact(int n) {

if (n=0) return 1
return n*fact(n-1)

¥

Stack frame for n=2 popped off. 2 Returned.

Activation Record — Example (Recursive
Functions)

Stack

main() {

fp—
main() fact(3);

sp——

¥

fact(int n) {
if (n=0) return 1
return n*fact(n-1)

¥

Stack frame for n=3 popped off. 6 Returned.

Activation Record

* What happens when a function is called?
1. fp and sp get adjusted

2. Memory for the activation record is allocated on stack

* The size of the memory allocated depends on local variables used by
the called function (consult function’s symbol table for this)

3. Each invocation of a function has its own instantiation of
local variables

* When the function call returns:

 Memory for the activation record is destroyed

Activation Record

 What is stored in the activation record?

Depends on the language being implemented:
* Temporaries
* Local vars
* Saved registers
* Return address, previous fp
* Return value
e Actual Params

 Who stores this information?

* Caller } together execute calling sequence and return
* Callee J sequence

Application Binary Interface (ABI)

* How is data organized on the activation record?
* ABI is the specification on how data is provided to functions
* Caller saves or callee saves

* ABIl is meant to deliver interoperability between different
compilers

* Compile the function using one compiler to create an object code,
Link object code with other code compiled using a different compiler

forms the calling convention

Typical Activation Record

Stack
(Higher address)
— argn
Previous frame - Callee accesses arguments using +ve offset
— arg 2 ,
from FP:
fo4— arg 1 argument1 = memory[FP]
— argument2 = memory|FP+1] ..
local var 1 ® y[|
local var 2
current frame | | 'I' Callee accesses local variables using —ve
OCalvarm offset from FP:
return address local var 1=memory[FP-1]
: local var 2=memory[FP-2
saved registers VIFP-2]
Sp;»

(Lower address)

Function call: Peeking at Activation

* When main calls function foo
1.

Record

main() {
: foo();
The following are pushed on to the stack:
1. foo’sarguments }
2. Space to hold foo’s return value
3. Address of the next instruction executed (in main) when foo

returns (return address)
4. Current value of $rbp (frame pointer)

$rsp is automatically updated (decremented) to point to current top of
the stack.

. $rbp is assigned the value of $rsp

Function call: Peeking at Activation

Record
Stack main’s fp
1234ABCD
Return value . main() {
z=foo(x, 2*y);
return;
}
int foo(int a, int b) {
int 11, 12
11=a;
12=b;

return 11+12;

Function call: Peeking at Activation

Record
Stack main’s fp
¥
- | 1234ABCD
eturn value . main
act. paraml X z=(-F)o(j:(x 2%)
act. param2 2*y t ’ 70
return,
}
int foo(int a, int b) {
int 11, 12
l1=a;
12=b;

return 11+12;
}

Function call: Peeking at Activation

Stack
Return value 7
act. paraml X
act. param?2 2*y
ret. addr. . 0000ABCD

return;

code

Record
main’s fp
1234ABCD
main() {
z=foo(x, 2*y);
return;
}

OOOOABCD

int foo(int a, int b) {
int 11, 12
11=a;
12=b;
return 11+12;

Function call: Peeking at Activation

Return value

—_—

act. paraml
—_—

act. param2

ret. addr.

Stack

Z

X

2*y

., 0000ABCD

return;

code

Record
main’s fp
123ZABCD“
main() {
“main’s Z=fOO(X, 2*y);
| frame return;
}

OOOOABCD

int foo(int a, int b) {
int 11, 12
11=a;
12=b;
return 11+12;

Function call: Peeking at Activation

Record
Stack main’s fp
| 4
ot | 1234ABCD |
eturn value 7 main() {
t, 1 _
Zzt. Ez:z%’ 2)§‘v main’s Z='FOO(X, 2*y) p
ret. addr. " 0000ABCD) frame return;
Saved frame ptr 1234 ABCD |« foo’s fp }
int foo(int a, int b) {
int 11, 12
l1=a;
12=b;
return 11+12;
return; |0000ABCD }

code

Function call: Peeking at Activation

Record
Stack main’s fp
| 4
ot | 1234ABCD |
eturn value 7 main() {
t, 1 _
Zzt. Ez:z%’ 2)§‘v main’s Z='FOO(X, 2*y) p
ret. addr. 0000ABCD i frame return;
Saved frame ptf 1234 ABCD)|« foo's fp }
local varl 11 Tf00’s
local var2 N . . .
' 12 frAme int foo(int a, int b) {
int 11, 12
l1=a;
12=b;

return 11+12;

OOOOABCD

26
€S323, IIT Dharwad code

Function calls — Register Handling

* Did not use registers in the previous example (for parameter
passing)

* Registers are faster than memory. So, compiler should keep
parameters in registers whenever possible

* Modern calling convention places first few arguments in registers
(arglinrl, arg2inr2, arg3 inr3...) and the remaining in memory.

* In x86 C-ABI, first 6 arguments are passed in registers

 What if callee wants to use registers rl, r2, r3 etc. for local
computation? Callee must save the registers in its stack frame.

Function calls — Register Handling

* Two options: caller saves or callee saves

e Caller Saves

» Caller pushes all the registers it is using on to the stack before
calling the function

* Restores the registers after the function returns

e Callee Saves

* Callee pushes all the registers it is going to use on the stack
immediately after being called

* Restores the registers just before it returns

Caller's responsibility

Callee's responsibility

CS323, IIT Dharwad

Activation records

Return value

Actual parameters

Caller's return address

<+— Stack Growth =—

Static links (other FPs)

Register save area

‘ Local variables

Caller's frame pointer [=—FP register

Is this record
generated for callee-

saves or caller-saves?
How would the
other record look?

29

Activation Record — Return Address and
Return Value

e Callee must be able to return to the caller when done

* Return address is the address of the instruction following the
function call

e Return address can be placed on the stack or on register

* The call instruction on modern machines places the return
address in a specific register

e Return value is placed in a specific register by the callee function

This week

 Functions continued

* Local Optimizations

The frame pointer

® Manipulate with instructions like 1ink and unlink

® Link: push current value of FP on to stack, set FP to top
of stack

® Unlink: read value at current address pointed to by FP,
set FP to point to that value

® |n other words: link pushes a new frame onto the stack,
unlink pops it off

CS323, IIT Dharwad 32

Stack Pointer

* SP is manipulated through push and pop
Instructions

Push x:
stack_pointer++
Memory[stack pointer] = x

Pop x:
X = Memory[stack pointer]
stack _pointer--

Example Subroutine Call and Stack Frame

return value
X
2%y
return address
R6— | saved frame ptr
K
2

stack

3-address code:

Lower addr

Z = SubOne(x,2*y);

int SubOne(int a, int b) {
int 11, 12;
11 =a;
12 =b;
return 11+12;

¥

push
push x
mul 2 y t1
push t1

jsr SubOne
Pop

Pop

Pop 2

assembly code:

push

push X
load y R1
muli 2 R1
push R1
jsr SubOne
Pop

POP

pop R1
store R1z

link 3

move $P1 $L1
move $P2 $L2
add $L1 $L2 t2
move 12 $R

. unlink

ret

link R6 3

load 3(R6) R1
store R1 -1(R6)
load 2(R6) R2
store R2 -2(R6)
load -1(R6) R1
add -2(R6) R1
store R1 4(R6)
unlink

ret

Question ?

Where are the command-line arguments stored?

How about environment variables such as
LD LIBRARY PATH and PATH?

Local Optimizations

Naive approach

® “Macro-expansion”

® Treat each 3AC instruction separately, generate code in
isolation

LD A,RI
LD B, R2
ADD RI,R2,R3
ST R3,C

ADDA,B,C ——

LD A,RI

MOV 4, R2
MUL RI,R2,R3
ST R3,B

MULA, 4,B >

CS323, IIT Dharwad 40

Why is this bad? (I)

LD A, RI

MOV 4,R2
MULA,4,B - MUL RI,R2,R3

ST R3,B

LD A, RI
MULA,4,B » MULIRI, 4,R3
ST R3,B

There is a better instruction available!

Too many instructions

Should use a different instruction type

CS323, IT Dharwad 41

Why is this bad? (Il)

ADDA B, C =

ADDC, A, E

CS323, IIT Dharwad

LD A, R

LD B, R2
ADD R1,R2,R3

ST R3,C
LD CR4 . This LD is redundant

LD A RS This LD is redundant

ADD R4 R5 R6
STR6E

42

Why is this bad? (Ill)

ADDABC ——

ADDA,B,C
ADDA,B,D

Wasting instructions recomputing A + B

CS323, IIT Dharwad

LD A, RI
LD B, R2
ADD RI1,R2,R3
ST R3,C

LD A,RI
LD B, R2
ADD RI,R2,R3

ST R3,C

LD A, R4
LD B, R5

ADD R4,R5,R6

ST R6,D

43

How do we address this?

® Several techniques to improve performance of generated
code

® [nsiruction selection to choose better instructions
® Peephole optimizations to remove redundant instructions

® Common subexpression elimination to remove redundant
computation

® Register allocation to reduce number of registers used

CS323, IT Dharwad 44

Instruction selection

® Even a simple instruction may have a large set of possible
address modes and combinations

+ABC

I—O Can be indirect, register, memory
address, indexed, etc.

® Can be literal, register, memory
address, indexed, etc.

® Can be literal, register, memory
address, indexed, etc.

® Dozens of potential combinations!
45

More choices for instructions

® Auto increment/decrement (especially common in
embedded processors as in DSPs)

® e.g,load from this address and increment it
® Why is this useful?
® Three-address instructions

® Specialized registers (condition registers, floating point
registers, etc.)

® “Free” addition in indexed mode

MOV (Rl)offset R2
® Why is this useful?

CS323, IIT Dharwad 46

Peephole optimizations

® Simple optimizations that can be performed by pattern
matching

® [ntuitively, look through a “peephole” at a small segment
of code and replace it with something better

® Example:if code generator sees ST R X; LD X R,
eliminate load

® Can recognize sequences of instructions that can be
performed by single instructions

LDI R1 RZ2; ADD R1 4 R1 replaced by

LDINC R1 R2 4 //load from address in RI then inc by 4

CS323, IT Dharwad 47

Peephole optimizations

® Simple optimizations that can be performed by pattern
matching

® [ntuitively, look through a “peephole” at a small segment
of code and replace it with something better

® Example:if code generator sees ST R X; LD X R,
eliminate load

Get the data present at address in R2 and put it in R1 be

LDI R1 R2; ADD R1 4 R1 replaced by

LDINC R1 R2 4 //load from address in RI then inc by 4

CS323, IIT Dharwad 48

Peephole optimizations

® Constant folding
ADD 1it1, 1it2, Rx —> MOV 1itl + 1it2, Rx

MOV 1itl, Rx

ADD 1i2, Rx, Ry —>» MOV 11tl1l + 11t2, Ry

® Strength reduction

MUL operand, 2, Rx == SHIFTL operand, 1, RXx
DIV operand, 4, Rx =—» SHIFTR operand, 2, RX

® Null sequences

MUL operand, 1, Rx =—» MOV operand, Rx

ADD operand, @, Rx —» MOV operand, Rx

CS323, IIT Dharwad 49

Peephole optimizations

® Combine operations

JEQ L1
IMP L2
L1:

® Simplifying
SUB operand, @, Rx =3 NEG RXx

® Special cases (taking advantage of ++/--)

ADD 1, Rx, Rx —> INC Rx
SUB Rx, 1, Rx —> DEC Rx
® Address mode operations
MOV A R1

ADD @(R1) RZ R3 ADD @A R2 R3

CS323, IIT Dharwad

Superoptimization

® Peephole optimization/instruction selection writ large

® Given a sequence of instructions, find a different sequence
of instructions that performs the same computation in less
time

® Huge body of research, pulling in ideas from all across
computer science

® Theorem proving

® Machine learning

CS323, IIT Dharwad 51

Common subexpression
elimination

® Goal:remove redundant computation, don’t calculate the
same expression multiple times

LA=B*C
2E=B*C

® Difficulty: how do we know when the same expression will
produce the same result?

I:A=B*C B is “killed.” Any expression using B is
no longer “available,” so we cannot

’ reuse the result of statement | for
3E=B*C statement 3

2: B = <new value>

® This becomes harder with pointers (how do we know
when B is killed?)

CS323, IIT Dharwad 52

Common subexpression
elimination

® Two varieties of common subexpression elimination (CSE)

Maximal sequence of instructions that are
executed one after another (i.e. there are
no jump instructions OR no instruction is
the target of a jump)

® Local: within a single basic block

® Easier problem to solve (why?)

® Global: within a single procedure or across the whole
program

® |Intra- vs.inter-procedural
® More powerful, but harder (why?)

® Will come back to these sorts of “global” optimizations
later

Local optimizations are done on basic blocks. Global optimizations on control flow graphs
(CFGs), where the basic blocks are the nodes of the graph. Then, there are inter-procedural
optimizations, which span function calls. Later on CFGs and other kinds of optimizations. 53

CSE in practice

® |dea: keep track of which expressions are “available” during

the execution of a basic block
® Which expressions have we already computed?

® |[ssue: determining when an expression is no longer
available

® This happens when one of its components is
assigned to, or “killed.”

® |dea: when we see an expression that is already available,
rather than generating code, copy the temporary

® |[ssue: determining when two expressions are the same

CS323, IIT Dharwad

54

Maintaining available expressions

® For each 3AC operation in a basic block

® Create name for expression (based on lexical
representation)

® [f name not in available expression set, generate code,
add it to set

® Track register that holds result of and any variables
used to compute expression

® [f name in available expression set, generate move
instruction

® |f operation assigns to a variable, kill all dependent
expressions

CS323, IIT Dharwad 55

3 Address Code

ADD A B T1

ADD T1 C T2
ADD A B T3
ADD T1 T2 C

ADD T1 C T4
ADD T3 T2 D

Example

Available expression(s)

1}
{“A + B”}
{“A + B”, “T1l + C”}
{“A + B”, “T1 + C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C’}

{“A + B”, “T1 + T2”,

“T1 + C”, “T3 + T2”}

Killed
expression(s)

1d c r5;

{“T1+C”}

1d ¢ r5;

Generated Code

(assembly)

1d a ril;
1d b r2;

add rl r2
add rl r5

mov rl r3

add rl r2
st rb c

add rl1l r5

add r3 r2
st ré6 d

rl
r2

r5

r4
ré

56

Downsides (CSE)

® What are some downsides to this approach?! Consider the
two highlighted operations

Three address code Generated code
+ ABT1 ADD A B R1
+ T1 C T2 ADD R1 C R2
+ AB T3 MOV R1 R3
+ 11/ T2 C ADD R1 RZ2 R5; ST R5 C
+ 71 C T4 ADD R1 C R4
+ T3|T2 D STR5D

T1 and T3 compute the same expression. This can be handled by an
optimization called value numbering.

CS323, IIT Dharwad 57

Aliasing

* One of the biggest problems in compiler analysis is to
recognize aliases — different names for the same location
IN memory

exercise: are T1 and T3 aliased in previous example?
*Why do aliases occur?

*Pointers referring to the same location

*Function calls passing the same reference in two arguments
*Arrays referencing the same element

*Unions

*\WWhat problems does aliasing pose for CSE?
*when talking about “live” and “killed” values in optimizations like
CSE, we're talking about particular variable names

*In the presence of aliasing, we may not know which variables get
killed when a location is written to 58

Memory disambiguation

® Most compiler analyses rely on memory disambiguation

® Otherwise, they need to be too conservative and are
not useful

® Memory disambiguation is the problem of determining
whether two references point to the same memory
location

® Points-to and alias analyses try to solve this

® Wil cover basic pointer analyses in a later lecture

CS323, IIT Dharwad

59

Single assignment form and its use in
local optimizations

X=Z+Yy
. a=X
Single assignment form: a variable is assigned only X=2%

once i.e. appears only once in LHS. _
replace x with b

] X=Z+y Neither z nor y can appear on b=z+y
Aids CSE: ... }‘/ the LHS here in single a=b
X=z+y \ assignment form. X=2%b

So, can be sure that this z+y is the same expression as
earlier. In the original code, if z or y were assigned to in
between the two expressions, then we would have used
different names, say, z1=..; yl=; then the last expression
would have to be rewritten as x=z1+y1.

Aids copy propagation: can replace all the uses of a variable downstream

Aids dead code elimination: if the variable is never used later, can safely
remove the statement where the variable is defined/assigned to.

Example — Local Optimizations

Nn OC L
i un 1
X W X

Example — Local Optimizations

 Algebraic simplification — exploiting mathematical
properties of operators involved
a=x*x
b=3
C=X
d=c*c
e=b<<1
f=a+d
g=e*f

Example — Local Optimizations

e Copy and constant propagation

a=Xx*Xx a=Xx*Xx
b=3 b=3
c=X » c=X
d=c*c d=x*X
e=b<<1 e=3<«1
f=a+d f=a+d

Example — Local Optimizations

* Constant folding

a=x*x a=x*x a=X*X
b=3 b=3 b=3
C=X C=X C=X
d: » d:X*X » d=X*X
e-b<<1 e=3<<1 e=6
f=a+d f=a+d f=a+d

g=e*f g=e*f g=e*f

CS323, IIT Dharwad

Example — Local Optimizations

 CSE
a=x*x a=X*X
b=3 b=3
Cc=X c=X
d=x*Xx » d=a
e=6 e=6
f=a+d f=a+d

g=e*f g=e*f

CS323, IIT Dharwad

Example — Local Optimizations

* Copy and Constant Propagation

*X

™ Q n O W
Il
OV X W X

a=X
b=3
.’> C=X
d=a
e=6

f=a+d f=a+a
g=e*f g=6*f

CS323, IIT Dharwad

66

Example — Local Optimizations

e Dead code elimination

CS323, IIT Dharwad 67

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Recap
	Slide 3: Activation
	Slide 4: Activation
	Slide 5: Activation Record
	Slide 6: Activation Record - Example
	Slide 7: Activation Record - Example
	Slide 8: Activation Record - Example
	Slide 9: Activation Record - Example
	Slide 10: Activation Record - Example
	Slide 11: Activation Record – Example (Recursive Functions)
	Slide 12: Activation Record – Example (Recursive Functions)
	Slide 13: Activation Record – Example (Recursive Functions)
	Slide 14: Activation Record – Example (Recursive Functions)
	Slide 15: Activation Record – Example (Recursive Functions)
	Slide 16: Activation Record
	Slide 17: Activation Record
	Slide 18: Application Binary Interface (ABI)
	Slide 19: Typical Activation Record
	Slide 20: Function call: Peeking at Activation Record
	Slide 21: Function call: Peeking at Activation Record
	Slide 22: Function call: Peeking at Activation Record
	Slide 23: Function call: Peeking at Activation Record
	Slide 24: Function call: Peeking at Activation Record
	Slide 25: Function call: Peeking at Activation Record
	Slide 26: Function call: Peeking at Activation Record
	Slide 27: Function calls – Register Handling
	Slide 28: Function calls – Register Handling
	Slide 29
	Slide 30: Activation Record – Return Address and Return Value
	Slide 31: This week
	Slide 32
	Slide 33: Stack Pointer
	Slide 35
	Slide 36: Question ?
	Slide 39: Local Optimizations
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Example
	Slide 57: Downsides (CSE)
	Slide 58: Aliasing
	Slide 59
	Slide 60: Single assignment form and its use in local optimizations
	Slide 61: Example – Local Optimizations
	Slide 62: Example – Local Optimizations
	Slide 63: Example – Local Optimizations
	Slide 64: Example – Local Optimizations
	Slide 65: Example – Local Optimizations
	Slide 66: Example – Local Optimizations
	Slide 67: Example – Local Optimizations

