
CS323: Compilers
Spring 2023

Week 6: Semantic Processing (contd..)

CS323, IIT Dharwad 1

Intermediate Representation

• Compilers need to synthesize code based on the
‘interpretation’ of the syntactic structure

• Code can be generated with the help of AST or

can directly do it in semantic actions (recall: SDTs
augment grammar rules with program fragments. Program fragments

contain semantic actions.)

• Generated code can be directly executed on the
machine or an intermediate form such as 3-address
code can be produced.

2

3 Address Code (3AC)

• What is it? sequence of elementary program instructions
• Linear in structure (no hierarchy) unlike AST

• Format:

op A, B, C //means C = A op B.

//op: ADDI, MULI, SUBF, DIVF, GOTO, STOREF etc.

• E.g.

program text 3-address code

3

ADDF x y T1
STOREF T1 z

INT x;
FLOAT y, z;
z:=x+y;

DIVI b c T1
SUBI a T1 T2
STOREI T2 d

INT a, b, c, d;
d = a-b/c;

Comments:
d = a-b/c; is broken into:
t1 = b/c;
t2 = a–t1;
d = t2;

3 Address Code (3AC)

• Why is it needed? To perform significant optimizations such
as:
• common sub-expression elimination

• statically analyze possible values that a variable can take etc.

How?

Break the long sequence of instructions into “basic blocks” and
operate on/analyze a graph of basic blocks

4

3 Address Code (3AC)

• How is it generated? Choices available:
1. Do a post-order walk of AST

• Generate/Emit code as a string/data_object (seen later) when you
visit a node

• Pass the code to the parent node

Parent generates code for self after the code for children is
generated. The generated code is appended to code passed by
children and passed up the tree

2. Can generate directly in semantic routines or after building AST 5

data_object generate_code() {
//preprocessing code
data_object lcode=left.generate_code();
data_object rcode=right.generate_code();
return generate_self(lcode, rcode);

}

3 Address Code (3AC)

• Generating 3AC directly in semantic routines.

• Walk the AST in post-order and infer at an internal node
(labelled op) that it computes a constant expression

6

MULI 3 4 T1
ADDI T1 5 T2
ADDI T2 6 T3
ADDI T3 7 T4
STOREI T4 x

INT x;
x:=3*4+5+6+7;

Comments:
x = 3*4+5+6+7 is broken into:
t1 = 3*4;
t2 = 5+t1;
t3 = 6+t2;
t4 = 7+t3;
x = t4

STOREI 30 x
INT x;
x:=3*4+5+6+7;

Comments:

6 7

+

L-values and R-values

• Need to distinguish between meaning of identifiers
appearing on RHS and LHS of an assignment statement

• L-values: addresses which can be loaded from or stored into

• R-values: data often loaded from address
• Expressions produce R-values

• Assignment statements: L-value := R-value;

7

i := 5;
i := i + 1;

//RHS specifies data that is computed/read.
LHS specifies address where data is stored.

a refers to memory location named
a. We are storing into that memory
location (L-value)

a refers to data stored in the memory
location named a. We are loading from
that memory location to produce R-value

a := a;

Temporaries

• Earlier saw the use of temporaries e.g.

• Think of them as unlimited pool of registers with memory
to be allocated later

• Optionally declare them in 3AC. Name should be unique
and should not appear in program text

• Temporary can hold L-value or R-value

8

ADDF x y T1
STOREF T1 z

INT x;
FLOAT y, z;
z:=x+y;

INT x
FLOAT y z T1
ADDF x y T1
STOREF T1 z

Temporaries and L-value

• Yes, a temporary can hold L-value. Consider:

Take L-value of b, don’t load from it, treat it as an R-value and
store the resulting data in a temporary

9

a := &b; //& is address-of operator. R-value
of a is set to L-value of b.
//expression on the RHS produces data that is
an address of a memory location.

Recall: L-Value = address which can be loaded
from or stored into, R-Value = data (often)
loaded from addresses.

Dereference operator

• Consider:

a appearing on LHS is loaded from to produce R-value. That
R-value is treated as an address that can be stored into.

Take R-value of a, treat it as an L-value (address of a memory
location) and then store RHS data

10

a := b; // is dereference operator. R-value
of a is set to R-value of b.
//expression on the LHS produces data that is
an address of a memory location.

Summary: pointer operations & and * mess with meaning of L-value and R-values

Observations

• Identifiers appearing on LHS are (normally) treated as L-
values. Appearing on RHS are treated as R-values.

• So, when you are visiting an id node in an AST, you cannot
generate code (load-from or store-into) until you have seen how
that identifier is used. => until you visit the parent.

• Temporaries are needed to store result of current
expression

• a data_object should store:
• Code
• L-value or R-Value or constant
• Temporary storing the result of the expression

11

12

Slide courtesy: Milind Kulkarni

13

Slide courtesy: Milind Kulkarni

Example - assignment statement

14

w:=x+y*(z+3);

AST for

Visit Node a:
Temp: w

Type: l-value

Code: --

Example - assignment statement

15

w:=x+y*(z+3);

AST for

Visit Node b:
Temp: x

Type: l-value

Code: --

Example - assignment statement

16

w:=x+y*(z+3);

AST for

Visit Node c:
Temp: y

Type: l-value

Code: --

Example - assignment statement

17

w:=x+y*(z+3);

AST for

Visit Node d:
Temp: z

Type: l-value

Code: --

Example - assignment statement

18

w:=x+y*(z+3);

AST for

Visit Node e:
Temp: 3

Type: constant

Code: --

Example - assignment statement

19

w:=x+y*(z+3);

AST for

Visit Node f:
Temp: T1

Type: R-value

Code:

LD z T2

ADD T2 3 T1

Example - assignment statement

20

w:=x+y*(z+3);

AST for

Visit Node g:
Temp: T3

Type: R-value

Code:

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

Example - assignment statement

21

w:=x+y*(z+3);

AST for

Visit Node h:
Temp: T5

Type: R-value

Code:

LD x T6

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

ADD T6 T3 T5

Example - assignment statement

22

w:=x+y*(z+3);

AST for

Visit Node i:
Temp: NA

Type: NA

Code:

LD x T6

LD y T4

LD z T2

ADD T2 3 T1

MUL T4 T1 T3

ADD T6 T3 T5

ST T5 w

23

Slide courtesy: Milind Kulkarni

24

Slide courtesy: Milind Kulkarni

25

Slide courtesy: Milind Kulkarni

26

Slide courtesy: Milind Kulkarni

Code-generation – if-statement

27

INT a, b;

Program text 3AC

Code-generation – if-statement

28

INT a, b;

Program text 3AC

Make entries in the
symbol table

Code-generation – if-statement

29

INT a, b;
a := 2;

Program text 3AC

Code-generation – if-statement

30

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Return an object
containing identifier
details after verifying
that “a” is present in the
symbol table.

:=

a 2

Code-generation – if-statement

31

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Pass up the identifier.

2. “2” is right-child,
type=const. No code
generated.

:=

a 2

Code-generation – if-statement

32

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Pass up the identifier.

2. “2” is right-child,
type=const. No code
generated.

3. Create a temporary T1 to
store the result of the
expression

:=

a 2

Code-generation – if-statement

33

INT a, b;
a := 2;

Program text 3AC

1. “a” is left-child, type=l-
val. No code generated.
Pass up the identifier.

2. “2” is right-child,
type=const. No code
generated.

3. Current node stores the
op ‘:=‘. A call to
process_op stores the
RHS data in LHS

:=

a 2

Code-generation – if-statement

34

INT a, b;
a := 2;

Program text 3AC

STOREI 2 T1
STOREI T1 a

Code-generation – if-statement

35

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

Code-generation – if-statement

36

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

1. Generate code for cond

Code-generation – if-statement

37

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

1. Generate code for cond
STOREI 1 T2
NE a T2 label1

Note that to generate this instruction when cond node is visited, we need
information about the label. This information can be passed on as a semantic
record for the child node of the if construct. The record can be created by the IF
construct (when the keyword IF is seen) and would be updated subsequently.

Code-generation – if-statement

38

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2. Generate code for stmt_list1

Code-generation – if-statement

39

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2. Generate code for stmt_list1 STOREI 1 T3
STOREI T3 b

Code-generation – if-statement

40

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for stmt_list2

Code-generation – if-statement

41

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for stmt_list2
JUMP label2
LABEL label1
STOREI 2 T4
STOREI T4 b
JUMP label2

The statements shown in red can be part of the semantic
routines that correspond to handling the else part.

Code-generation – if-statement

42

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for if_stmt

LABEL label2

Code-generation – if-statement

43

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

STOREI 2 T1 //a := 2
STOREI T1 a
STOREI 1 T2 //a = 1?
NE a T2 label1
STOREI 1 T3 //b := 1
STOREI T3 b
JUMP label2 //to out label
LABEL label1 //else label begins here
STOREI 2 T4 //b := 2
STOREI T4 b
JUMP label2 //jump to out label
LABEL label2 //out label

Program text 3AC

Can also generate this code after seeing the token ENDIF (rather than as part of the
routine that is executed when the whole production is matched)

Jumps and Labels?

• Who will generate labels?

• When will the labels be generated?

• To what addresses will the labels be associated
with?

How are targets of jumps decided?

44

If construct with semantic actions

• If_stmt->if #start_if <b_expr> #testif then
<stmt_list> <else_part> endif; #gen_out_label

• else_part->else #gen_jump #gen_else_label
<stmt_list>

45

Code-generation – if-statement

46

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

1 Generate out label and store it in semantic record of if_stmt
(label1)

if

The #start_if routine is responsible for this

ENDIF

Code-generation – if-statement

47

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2 Generate code for

expr1 expr2

cond STOREI 1 T2
NE a T2 label1

comp

if ENDIF

Code-generation – if-statement

48

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2. Store the result of calling process_op,
where op is “=“, in the node cond
(bool_expr1=false)

STOREI 1 T2
NE a T2 label1

if ENDIF

Code-generation – if-statement

49

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

2. Create a label for the next else part (label 2). Generate
statement: JUMP0 T2 label2

if

The #testif routine handles this.

ENDIF

Code-generation – if-statement

50

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

3. Generate code for stmt_list1
STOREI 1 T3
STOREI T3 b

if ENDIF

Code-generation – if-statement

51

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

4. Generate unconditional jump to out label (label1).
JUMP label1

if

ELSE

Routine #gen_jump
handles this

ENDIF

Code-generation – if-statement

52

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

5. Associate else part label (label2) with address of next
instruction i.e. generate a statement: LABEL label2

if

ELSE

Routine
#gen_else_label
handles this

ENDIF

Code-generation – if-statement

53

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

5. Generate code for stmt_list2
STOREI 2 T4
STOREI T4 b

if

ELSE

ENDIF

Code-generation – if-statement

54

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSE

b := 2;
ENDIF

Program text 3AC

STOREI 2 T1
STOREI T1 a

if_stmt

cond stmt_list1 stmt_list2

then else

5. Associate out label (label1) with address of next instruction
i.e. generate a statement: LABEL label1

if

ELSE

ENDIF

Routine #gen_out_label handles this

Observations

• We added semantic actions with tokens IF, ELSE,
ENDIF

• Generated code is equivalent but not exact
• e.g. “NE a T2 label1” is replaced with an equivalent

“JUMP0 bool_expr label1”

• Done in one pass ?

Will this approach work when generating machine
code directly?

55

If construct with semantic actions

• If_stmt->if #start_if <b_expr> #testif then
<stmt_list> <optional_elsif_part> <else_part>
endif; #gen_out_label

• <optional_elsif_part>-> elsif #gen_jump
#gen_else_label <b_expr> #testif then <stmts>

• Else_part->else #gen_jump #gen_else_label
<stmt_list>

56

Exercise: augment the grammar rule to handle elsif
blocks.

Code-generation – if-statement

57

INT a, b;
a := 2;
IF (a = 1)

b := 1;
ELSIF (TRUE)

b := 2;
ENDIF

STOREI 2 T1 //a := 2
STOREI T1 a
STOREI 1 T2 //a = 1?
NE a T2 label1
STOREI 1 T3 //b := 1
STOREI T3 b
JUMP label2 //to out label
LABEL label1 //elsif label
STOREI 1 T4 //TRUE can be handled by checking 1 = 1?
STOREI 1 T5
NE T4 T5 label3 //jump to the next elsif label
STOREI 2 T6 //b := 2
STOREI T6 b
JUMP label2 //jump to out label
LABEL label3 //out label
LABEL label2 //out label

Program text 3AC

do-while

• do{S}while(B); //S is executed at least once
and again and again and again... while B remains true

58

do-while

• do{S}while(B); //S is executed at least once
and again and again and again... while B remains true

LOOP:

<stmt_list>

<bool_expr>

j<!op> OUT

jmp LOOP

OUT:

59

do #beginloop {S} while(B) #testloop ; #endloop

#beginloop
create labels LOOP and OUT
generate LABEL LOOP

#endloop
Generate JUMP0 OUT
Generate JUMP LOOP

#testloop
Check if the conditional statement B
has the correct type (Boolean)

repeat-until

• repeat{S}until(B); //S is executed at least
once and again and again and again... while B remains
false

60

repeat-until

• repeat{S}until(B); //S is executed at least
once and again and again and again... while B remains
false

61

LOOP:
<stmt_list>
<bool_expr>
j<!op> LOOP

OUT:

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Intermediate Representation
	Slide 3: 3 Address Code (3AC)
	Slide 4: 3 Address Code (3AC)
	Slide 5: 3 Address Code (3AC)
	Slide 6: 3 Address Code (3AC)
	Slide 7: L-values and R-values
	Slide 8: Temporaries
	Slide 9: Temporaries and L-value
	Slide 10: Dereference operator
	Slide 11: Observations
	Slide 12
	Slide 13
	Slide 14: Example - assignment statement
	Slide 15: Example - assignment statement
	Slide 16: Example - assignment statement
	Slide 17: Example - assignment statement
	Slide 18: Example - assignment statement
	Slide 19: Example - assignment statement
	Slide 20: Example - assignment statement
	Slide 21: Example - assignment statement
	Slide 22: Example - assignment statement
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Code-generation – if-statement
	Slide 28: Code-generation – if-statement
	Slide 29: Code-generation – if-statement
	Slide 30: Code-generation – if-statement
	Slide 31: Code-generation – if-statement
	Slide 32: Code-generation – if-statement
	Slide 33: Code-generation – if-statement
	Slide 34: Code-generation – if-statement
	Slide 35: Code-generation – if-statement
	Slide 36: Code-generation – if-statement
	Slide 37: Code-generation – if-statement
	Slide 38: Code-generation – if-statement
	Slide 39: Code-generation – if-statement
	Slide 40: Code-generation – if-statement
	Slide 41: Code-generation – if-statement
	Slide 42: Code-generation – if-statement
	Slide 43: Code-generation – if-statement
	Slide 44: Jumps and Labels?
	Slide 45: If construct with semantic actions
	Slide 46: Code-generation – if-statement
	Slide 47: Code-generation – if-statement
	Slide 48: Code-generation – if-statement
	Slide 49: Code-generation – if-statement
	Slide 50: Code-generation – if-statement
	Slide 51: Code-generation – if-statement
	Slide 52: Code-generation – if-statement
	Slide 53: Code-generation – if-statement
	Slide 54: Code-generation – if-statement
	Slide 55: Observations
	Slide 56: If construct with semantic actions
	Slide 57: Code-generation – if-statement
	Slide 58: do-while
	Slide 59: do-while
	Slide 60: repeat-until
	Slide 61: repeat-until
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Suggested Reading

