
CS323: Compilers
Spring 2023

Week 3: Scanners (conclusion), Parsers

CS323, IIT Dharwad 1



Scanners (Summary)

• Also called Lexers / Lexical Analyzers

• Input: stream of letters (program text / source 
code), Output: sequence / list of tokens

• Token: a pair <category/class, value>
• Category defines a string pattern
• Value also called lexeme
• Value is a prefix (and hence, is a substring)
• Value matches on of the patterns that category 

defines

• Scan left-to-right in program text, look-ahead
to identify tokens.   

• Look-ahead buffer size determined by language 
design

CS323, IIT Dharwad 2



Scanners (Summary)

• Regular expressions are used to formally 
define the patterns specified by token classes.

• Some customization done while defining regular 
expressions: 1) Match the longest substring possible 2) 
Handle errors

• Tools such as Flex and ANTLR convert regular 
expressions to code. The code is your scanner 
implementation

• The implementation typically converts regular 
expressions to Finite Automata (special kind of 
state diagram)

• Automata are coded using efficient algorithms (E.g. Table-
lookup method )

• Efficient algorithms exist for substring matching 
(requiring single-pass over input program text)

• Aho-Corasic, Knuth-Morris-Pratt (KMP)

CS323, IIT Dharwad 3



Parsers - Overview

• Also called syntax analyzers

• Determine two things:
1. Is a program syntactically valid? 

(Analogy) is an English language sentence 
grammatically correct? 

2. What is the structure of programming language 
constructs? E.g. does the sequence* 

IF, ID(a), OP(<), ID(b), {, ID(a), 
ASSIGN, LIT(5), }}   

refer to an if statement?

(Analogy) diagramming English sentences

CS323, IIT Dharwad 4

if (a < 4) {
b = 5

}

* Correponding program text:



Parsers - Overview

• Input: stream of tokens

• Output: Parse tree 
• sometimes implicit

if ( ID(a) OP(<) LIT(4) )

{ ID(b) = LIT(5) }

Stream of tokens:

Parse tree:

CS323, IIT Dharwad 5cond-expr assign-stmtKeyword (IF)

stmt

stmt-list

( ) { }

if_stmt



Parsers – what do we need to know?

1. How do we define language constructs? 

• Context-free grammars

2. How do we determine: 1) valid strings in the 
language? 2) structure of program?

• LL Parsers, LR Parsers

3. How do we write Parsers?

• E.g. use a parser generator tool such as Bison

CS323, IIT Dharwad 6



Languages

• A language is (possibly infinite) set of strings

• Regular expressions specify regular languages. However, 
regular languages are weak formal languages to describe 
the features of a practical programming language.

CS323, IIT Dharwad 7

1

1

0
0

The FA shown accepts all string with odd 
number of 1s. 

weakness: regular expressions can’t describe a string of the form: { (i )i | i>=1}

Regular expressions can describe strings specifying parity:
{ mod k | k=# states in FA}

What set of strings does this FA accept?

What is the regular expression for the FA?

(0*10*)(10*10*)*



Regular Languages

• Regular expressions can’t describe a string of the form: 

{ (i )i | i>=1}

Nested structures:

E.g. Parenthesized expressions

((( int x; )))

IF
IF
IF
FI

FI
FI 

Programming language syntax is i.e. recursive
((2+3)*5)

CS323, IIT Dharwad 8



Context Free Grammar (CFG)

• Natural notation for describing recursive structure definitions. 
Hence, suitable for specifying language constructs.

• Consist of:

• A set of Terminals (T)

• A set of Non-terminals (N)

• A Start Symbol (S∈N)

• A set of Productions (X -> Y1..YN) ( aka. rules)

P:X     Y1Y2Y3..YN

CS323, IIT Dharwad 9

X∈N, Yi∈ N ⋃ T ⋃ ϵ/λ



Context Free Grammar (CFG)

• Grammar G = (T, N, S, P)

E.g. G = ({a,b}, {S, A, B}, S, {S  AB, A  Aa

A  a, B  Bb, B  b})

• Implicit meanings

• First rule listed in the set of productions contains start symbol (on the left-
hand side)

• In the set of productions, you can replace the symbol X (appearing on the 
right-hand side only) with the string of symbols that are on the right-hand 
side of a rule, which has X (on the left-hand side)

CS323, IIT Dharwad 10



Context Free Grammar (CFG)

1. Begin with only S as the initial string

2. Replace S

• S replaced with AB

3. Repeat 2 until the string contains only terminals

i. AB replaced with aB

ii. aB replaced with ab

G = (T, N, S, P)
P:{ S->AB, 

A->Aa,
A->a, 
B->Bb, 
B->b }

Summary: we move from S to a string of terminals through a series of transformations:

α0-> … -> αn where α1 . . . αn are strings

α0-> αn
*Shorthand notation:

CS323, IIT Dharwad 11



Detour: Context-Sensitive Grammar

• Can have context-sensitive grammar and languages 
(think: aB->ab)

• Cannot replace right-hand side with left-hand side irrespective of the 
context.

• E.g. aB->ab lays down a context: ‘a’ must be a prefix in order to 
transform the string “aB” to a string of terminals “ab”

• ccaBb can be replaced by ccabb

Is grammar G context-free?

G = (T, N, S, P)
P:{ S->AB, 

A->Aa,
A->a, 
B->Bb, 
B->b }

CS323, IIT Dharwad 12



Slide courtesy: Milind Kulkarni

A -> Aa

| a

CS323, IIT Dharwad 13

Alternative notation for two 
productions A->Aa and A->a

(Summary)



14CS323, IIT Dharwad
Slide courtesy: Milind Kulkarni



Language of the Grammar

• Language L(G) of the context-free grammar G

• Set of strings that can be derived from S

• {a1a2a3..aN |  ai∈ T Ɐ i and                               }

• Is called context-free language

• All regular languages are context-free but not vice-versa.

• Can have many grammars generating same language.

S-> a1a2a3..aN
*

CS323, IIT Dharwad 15



String Derivations: Does a string 
belong to the Language? 

• How do we apply the grammar rules to determine the 
acceptability of a string? (i.e. the string belongs to the language, L(G), 
specified by the CFG G)

• Begin with S

• Replace S

• Repeat till string contains terminals only. Why terminals only?

• Notation:
• We will use Greek letters to denote strings containing non-terminals 

and terminals

• Derivations: sequence of rules applied to produce the string of 
terminals

L(G) must contain strings of terminals only

CS323, IIT Dharwad 16



17CS323, IIT Dharwad
Slide courtesy: Milind Kulkarni

(Example)



18

CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string 
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS323, IIT Dharwad



19

Exercise

Which of the below strings are accepted by the 
grammar:

1. abcba

2. abcbca

3. abba   

4. abca

1: A ->  aAa
2: A ->  bBb 
3: A ->  λ
4: B ->  cA
5: B ->  λ

1->2->4->3

1->2->5

CS323, IIT Dharwad



20CS323, IIT Dharwad
Slide courtesy: Milind Kulkarni



21

Derivations and Parse Trees

• Recall: Derivation is a sequence of rules applied to 
produce a string

• S -> α0 -> α1 -> α2 -> . . . ->αn

• A derivation defines a parse tree

• Parse tree is an alternative way to gather information on 
how the string was derived

• A parse tree may have many derivations (think: different 
permutations of α )

CS323, IIT Dharwad



22

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

CS323, IIT Dharwad



23

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Start with E, the start symbol Parse Tree

EE

CS323, IIT Dharwad



24

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Replace E with E + E Parse Tree

E

E E+

E
E+E

CS323, IIT Dharwad



25

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 2: Replace E with E * E Parse Tree

E

E E+

E E*

E
E+E
E*E+E

CS323, IIT Dharwad



26

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E

CS323, IIT Dharwad



27

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E
id*id+E

idCS323, IIT Dharwad



28

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id Parse Tree

E
E+E
E*E+E
id*E+E
id*id+E
id*id+id

E

E E+

E E*

id

id

idCS323, IIT Dharwad



29

Derivations and Parse Trees

• Note in previous slides:
• Replacement done on left-most non-terminal in the 

string  - called left-most derivation

• Terminals at leaves and non-terminal as interior nodes

• Inorder traversal of leaves produces input string 
id*id+id E

E E+

E E*

id

id

id

CS323, IIT Dharwad



30

Derivations and Parse Trees

• Note in previous slides:
• Replacement done on left-most non-terminal in the 

string  - called left-most derivation

• Terminals at leaves and non-terminal as interior nodes

• Inorder traversal of leaves produces input string 
id*id+id

• Parse tree shows association of operations. Input string 
doesn’t

• * associated with identifiers in the subtree

(id * id)+id

E

E E+

E E*

id

id

id

CS323, IIT Dharwad



31

Derivations and Parse Trees

• Consider the same grammar (having the following rules):

• Produce derivations for the string: id*id+id
• Using right-most derivations

i.e. replace the right-most non-terminal

1: E -> E + E 
2:    | E * E 
3:    | id

CS323, IIT Dharwad



32

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Start with E, the start symbol

Parse Tree
E

E

CS323, IIT Dharwad



33

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 2: Replace E with E+E

Parse Tree
E
E+E

E

E E+

CS323, IIT Dharwad



34

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Replace E with id

Parse Tree
E
E+E
E+id

E

E E+

id

CS323, IIT Dharwad



35

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with E * E

Parse Tree
E
E+E
E+id
E*E+id

E

E E+

id
E E*

CS323, IIT Dharwad



36

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id

E

E E+

idE E*

idCS323, IIT Dharwad



37

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id
id*id+id

E

E E+

idE E*

ididCS323, IIT Dharwad



• We get the same parse tree using left-most and right-most 
derivations.

• Every parse tree has left-most and right-most (and any random 
order) derivations.

38

E

E E+

idE E*

idid

Derivations and Parse Trees

CS323, IIT Dharwad



• We get the same parse tree using left-most and right-most 
derivations.

• Every parse tree has left-most and right-most (and any random 
order) derivations.

• But there could be a string (or more than one strings) for which there 
exists derivations that would get different parse trees 

39

E

E E+

idE E*

idid

Derivations and Parse Trees

CS323, IIT Dharwad



40

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Start with E, the start symbol

Parse Tree
E

E

CS323, IIT Dharwad



41

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 2: Replace E with E*E

Parse Tree
E
E*E

E

E E*

Earlier it was replace E with E+E

CS323, IIT Dharwad



42

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Replace E with E+E

Parse Tree
E
E*E
E*E+E

E

E E*

E E+

CS323, IIT Dharwad



43

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id

E

E E*

E E+

idCS323, IIT Dharwad



44

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id

E

E E*

E E+

id idCS323, IIT Dharwad



45

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id
id*id+id

E

E E*

E E+

id

id

idCS323, IIT Dharwad



• Input string: id*id+id

• Inorder traversal of leaves in both trees produces the 
same input string

46

E

E E*

E E+

id

id

id

E

E E+

E E*

id

id

id

Derivations and Parse Trees

nowearlier

CS323, IIT Dharwad



47

Ambiguous Grammar

• Grammar that produces more than one parse tree for 
some string

1: E -> E + E 
2:    | E * E 
3:    | id

CS323, IIT Dharwad



48

Ambiguity – what to do?

• Ignore it (let it be ambiguous)
• Give hints to other components of the compiler on how to 

resolve it 

• Fix it (Manually)
• May make the grammar complicated and difficult to 

maintain

CS323, IIT Dharwad



49

Ambiguity – ignore

• Grammar: E -> E + E | id input:id+id+id

E

E+

id

id id

E

E E+

id
E E+

id id

E->E+E E->E+E

(left associative for +. So, produces the 

parse tree on the right)
CS323, IIT Dharwad

E->id+E

E->id+E+E

E->id+id+E

E->id+id+id

Matches the input, which would be 
evaluated (later) as:

E

E E+

E->E+E+E
E->id+E+E

E->id+id+E

E->id+id+id

(id+id)+idid+(id+id)

%left + Provide hint (in Bison). Associativity declaration.



50

Ambiguity - ignore

• E -> E + E | E * E | id

E

E E+

id
E E*

id id

E->E+E
E->id+E
E->id+E*E
E->id+id*E
E->id+id*id

Produces  
tree for: 
id+(id*id)

E

E E*

id
E E+

id id

E->E*E
E->E+E*E
E->id+E*E
E->id+id*E
E->id+id*id

Produces  
tree for: 
(id+id)*id

CS323, IIT Dharwad

Tells that * has higher precedence over + and both are left 
associative. So, we get the tree on left. 

%left +
%left *



51

Ambiguity – fixing

• Rewrite                           as:

E->E’+E
E’->id*E’
E’->id
E->E’
E’->id

E -> E’ + E | E’
E’ -> id * E’ | id 

E -> E + E 
| E * E 
| id

E

E’ E+

id E’* E’

id id

is the above sequence left-most or right-most derivation?

CS323, IIT Dharwad

| (E) * E’ | (E)

If you want to handle parenthesized 
expressions such as (id+id)*id

- E controls generation of +
- E’ controls generation of *

Parse tree for input id*id+id

*’s are always nested deeper in the parse tree.



52

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse tree(s) for the 
following  input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2 

CS323, IIT Dharwad



53

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the 
following  input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2 

CS323, IIT Dharwad



54

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the 
following  input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2 

CS323, IIT Dharwad



55

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the 
following  

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2

input: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

e1

STMT

if
STMT

EXPR

then

else
STMT

e2
s1

s2

STMT

if EXPR
then

else
STMT

e1
s2

STMT

if EXPR
then

e2

STMT

s1
CS323, IIT Dharwad



56

Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

e1

STMT

if
STMT

EXPR

then

else
STMT

e2
s1

s2

CS323, IIT Dharwad



57

Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

else
STMT

e1
s2

STMT

if EXPR
then

e2

STMT

s1

CS323, IIT Dharwad



58

Ambiguity Fixing - Exercise

Exercise: Rewrite the grammar to make it unambiguous.

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2

CS323, IIT Dharwad



60

CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string 
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS323, IIT Dharwad

Next



61

Error Handling

• Objective: detect invalid programs and provide 

meaningful feedback to programmer

• Report errors accurately

• Recover from errors quickly

• Don’t slow down compilation

CS323, IIT Dharwad



62

Error Types

• Many types of errors:

• Lexical –

• Syntactic –

• Semantic –

• Logical –

CS323, IIT Dharwad

extra brace inserted {

float sqr; sqr(2); 
//use variable name with function 

call syntax

use = instead of ==  

int 9abc; //invalid identifier



63

Error Handling - Types

1. Panic mode

2. Error production

3. Automatic local or global correction

CS323, IIT Dharwad



64

Panic Mode Error Handling

• Simplest, most popular

• Discards tokens until one from a set of synchronizing 

tokens is found 

• Synchronizing tokens have a clear role

e.g. semicolons, braces

• E.g. i= i++j  

policy: while parsing an expression, discard all tokens 

until an identifier is found. This policy skips the additional +

• Specifying policy in bison: error keyword

E -> E + E | (E) | id | error id | error

CS323, IIT Dharwad



65

Error Productions

• Anticipate common errors

– 2 x instead of 2 *

• Augment the grammar

– E -> EE | …

• Disadvantages:

– Complicates the grammar

CS323, IIT Dharwad



66

Error Corrections

• Rewrite the program – find a “nearby” correct 

program
– Local corrections – insert a semicolon, replace a comma with 

semicolon etc.

– Global corrections – modify the parse tree with “edit distance” 

metric in mind

• Disadvantages?

– Implementation difficulty

– Slows down compilation

– Not sure if “nearby” program is intended

CS323, IIT Dharwad



Parsers – what do we need to know?

1. How do we define language constructs? 

• Context-free grammars

2. How do we determine: 1) valid strings in the 
language? 2) structure of program?

• LL Parsers, LR Parsers

3. How do we write Parsers?

• E.g. use a parser generator tool such as Bison

CS323, IIT Dharwad 67

Next



70

Top-down Parsing

Slide courtesy: Milind Kulkarni
CS323, IIT Dharwad



71

Top-down Parsing

• Also called recursive-descent parsing

• Equivalent to finding the left-derivation for an 

input string

– Recall: expand the leftmost non-terminal in a parse 

tree

– Expand the parse tree in pre-order i.e., identify 

parent nodes before children

CS323, IIT Dharwad



72

Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Start with S

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

CS323, IIT Dharwad



73

Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 1

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

CS323, IIT Dharwad



74

Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 2

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

CS323, IIT Dharwad



75

Top-down Parsing

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

No more non terminals! 
String doesn’t match. 
Backtrack.

CS323, IIT Dharwad



76

Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

CS323, IIT Dharwad



77

Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 3

Step Input string Parse tree

1 cad S

2 cad

4 cad

S

c A d

S

c A d

a

S

c A d

S

c A d

a

S

c A d

S

c A d

a

: next symbol to 

be read

CS323, IIT Dharwad



78

Top-down Parsing – Table-driven Approach

1: S -> F
2: S -> (S + F)
3: F -> a

string: (a+a)

( ) a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

CS323, IIT Dharwad



79

Top-down Parsing – Table-driven Approach

1: S -> F
2: S -> (S + F)
3: F -> a

• Table-driven (Parse Table) approach doesn’t require 

backtracking

string: (a+a)

( ) a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?

CS323, IIT Dharwad



80

Important Concepts: First Sets and 
Follow Sets

CS323, IIT Dharwad



81CS323, IIT Dharwad
Slide courtesy: Milind Kulkarni



82CS323, IIT Dharwad
Slide courtesy: Milind Kulkarni



83CS323, IIT Dharwad
Slide courtesy: Milind Kulkarni



84CS323, IIT Dharwad



85

First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { ? } Think of all possible strings derivable from S. 
Get the first terminal symbol in those strings 

or λ if S derives λ

CS323, IIT Dharwad



86

First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }

CS323, IIT Dharwad



87

First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = {  ?  }

CS323, IIT Dharwad



88

First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = { x, y, c }

CS323, IIT Dharwad



89

First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = { x, y, c }
first (B) = {  ? }

CS323, IIT Dharwad



90

First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = { x, y, c }
first (B) = { b, λ }

CS323, IIT Dharwad



91

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = { ? } Think of all strings possible in the language

having the form ..Sa.. Get the following 

terminal symbol a after S in those strings or $
if you get a string ..S$

CS323, IIT Dharwad



92

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }

CS323, IIT Dharwad



93

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { ? }

CS323, IIT Dharwad



94

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c } e.g. xaAbc$, xaAc$

CS323, IIT Dharwad



95

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c } e.g. xaAbc$, xaAc$

What happens when you consider: A -> xaA or A -> yaA ?

CS323, IIT Dharwad



96

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c } e.g. xaAbc$, xaAc$

What happens when you consider: A -> xaA or A -> yaA ?

• You will get string of the form  A=>+ (xa)+A
• But we need strings of the form: ..Aa.. or ..Ab. or ..Ac..

CS323, IIT Dharwad



97

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c }
follow (B) = { ? }

CS323, IIT Dharwad



98

Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c }
follow (B) = { c }

CS323, IIT Dharwad



99

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { ? } = First(ABc$) if λ ∉ First(ABc$)

CS323, IIT Dharwad



100

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }

x y a b c $

S 1 1 1

A

B

CS323, IIT Dharwad



101

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { ? }

x y a b c $

S 1 1 1

A

B

= First(xaA) if λ ∉ First(xaA)

CS323, IIT Dharwad



102

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }

x y a b c $

S 1 1 1

A 2

B

CS323, IIT Dharwad



103

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { ? }

x y a b c $

S 1 1 1

A 2

B

= First(yaA) if λ ∉ First(yaA)

CS323, IIT Dharwad



104

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }

x y a b c $

S 1 1 1

A 2 3

B

CS323, IIT Dharwad



105

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { ? }

x y a b c $

S 1 1 1

A 2 3

B

= First(c) if λ ∉ First(c)

CS323, IIT Dharwad



106

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }

x y a b c $

S 1 1 1

A 2 3 4

B

CS323, IIT Dharwad



107

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { ? }

x y a b c $

S 1 1 1

A 2 3 4

B

= First(b) if λ ∉ First(b)

CS323, IIT Dharwad



108

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }

x y a b c $

S 1 1 1

A 2 3 4

B 5

CS323, IIT Dharwad



109

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }
Predict (6) = { ? }

x y a b c $

S 1 1 1

A 2 3 4

B 5

= First(λ) ? CS323, IIT Dharwad



110

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }
Predict (6) = { ? }

x y a b c $

S 1 1 1

A 2 3 4

B 5

= First(λ) ? Follow(B)CS323, IIT Dharwad



111

Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }
Predict (6) = { c }

x y a b c $

S 1 1 1

A 2 3 4

B 5 6

CS323, IIT Dharwad



112

Computing Parse-Table

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

x y a b c $

S 1 1 1

A 2 3 4

B 5 6

first (S) = {x, y, c}
first (A) = {x, y, c}
first(B) = {b, λ}

follow (S) = {}
follow (A) = {b, c}
follow(B) = {c}

P(1) = {x,y,c}
P(2) = {x}
P(3) = {y}
P(4) = {c}
P(5) = {b}
P(6) = {c}

CS323, IIT Dharwad


	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Scanners (Summary)
	Slide 3: Scanners (Summary)
	Slide 4: Parsers - Overview
	Slide 5: Parsers - Overview
	Slide 6: Parsers – what do we need to know?
	Slide 7: Languages
	Slide 8: Regular Languages
	Slide 9: Context Free Grammar (CFG)
	Slide 10: Context Free Grammar (CFG)
	Slide 11: Context Free Grammar (CFG)
	Slide 12: Detour: Context-Sensitive Grammar
	Slide 13
	Slide 14
	Slide 15: Language of the Grammar
	Slide 16: String Derivations: Does a string belong to the Language? 
	Slide 17
	Slide 18: CFG and Parsers
	Slide 19: Exercise
	Slide 20
	Slide 21: Derivations and Parse Trees
	Slide 22: Derivations and Parse Trees
	Slide 23: Derivations and Parse Trees
	Slide 24: Derivations and Parse Trees
	Slide 25: Derivations and Parse Trees
	Slide 26: Derivations and Parse Trees
	Slide 27: Derivations and Parse Trees
	Slide 28: Derivations and Parse Trees
	Slide 29: Derivations and Parse Trees
	Slide 30: Derivations and Parse Trees
	Slide 31: Derivations and Parse Trees
	Slide 32: Derivations and Parse Trees
	Slide 33: Derivations and Parse Trees
	Slide 34: Derivations and Parse Trees
	Slide 35: Derivations and Parse Trees
	Slide 36: Derivations and Parse Trees
	Slide 37: Derivations and Parse Trees
	Slide 38: Derivations and Parse Trees
	Slide 39: Derivations and Parse Trees
	Slide 40: Derivations and Parse Trees
	Slide 41: Derivations and Parse Trees
	Slide 42: Derivations and Parse Trees
	Slide 43: Derivations and Parse Trees
	Slide 44: Derivations and Parse Trees
	Slide 45: Derivations and Parse Trees
	Slide 46: Derivations and Parse Trees
	Slide 47: Ambiguous Grammar
	Slide 48: Ambiguity – what to do?
	Slide 49: Ambiguity – ignore
	Slide 50: Ambiguity - ignore
	Slide 51: Ambiguity – fixing
	Slide 52: Ambiguity Fixing - Exercise
	Slide 53: Ambiguity Fixing - Exercise
	Slide 54: Ambiguity Fixing - Exercise
	Slide 55: Ambiguity Fixing - Exercise
	Slide 56: Ambiguity Fixing - Exercise
	Slide 57: Ambiguity Fixing - Exercise
	Slide 58: Ambiguity Fixing - Exercise
	Slide 60: CFG and Parsers
	Slide 61: Error Handling
	Slide 62: Error Types
	Slide 63: Error Handling - Types
	Slide 64: Panic Mode Error Handling
	Slide 65: Error Productions
	Slide 66: Error Corrections
	Slide 67: Parsers – what do we need to know?
	Slide 70: Top-down Parsing
	Slide 71: Top-down Parsing
	Slide 72: Top-down Parsing
	Slide 73: Top-down Parsing
	Slide 74: Top-down Parsing
	Slide 75: Top-down Parsing
	Slide 76: Top-down Parsing
	Slide 77: Top-down Parsing
	Slide 78: Top-down Parsing – Table-driven Approach
	Slide 79: Top-down Parsing – Table-driven Approach
	Slide 80: Important Concepts: First Sets and  Follow Sets 
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: First Set - Example
	Slide 86: First Set - Example
	Slide 87: First Set - Example
	Slide 88: First Set - Example
	Slide 89: First Set - Example
	Slide 90: First Set - Example
	Slide 91: Follow Set - Example
	Slide 92: Follow Set - Example
	Slide 93: Follow Set - Example
	Slide 94: Follow Set - Example
	Slide 95: Follow Set - Example
	Slide 96: Follow Set - Example
	Slide 97: Follow Set - Example
	Slide 98: Follow Set - Example
	Slide 99: Predict Set - Example
	Slide 100: Predict Set - Example
	Slide 101: Predict Set - Example
	Slide 102: Predict Set - Example
	Slide 103: Predict Set - Example
	Slide 104: Predict Set - Example
	Slide 105: Predict Set - Example
	Slide 106: Predict Set - Example
	Slide 107: Predict Set - Example
	Slide 108: Predict Set - Example
	Slide 109: Predict Set - Example
	Slide 110: Predict Set - Example
	Slide 111: Predict Set - Example
	Slide 112: Computing Parse-Table

