
CS323: Compilers
Spring 2023

Week 3: Scanners (conclusion), Parsers
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Scanners (Summary)

• Also called Lexers / Lexical Analyzers

• Input: stream of letters (program text / source 
code), Output: sequence / list of tokens

• Token: a pair <category/class, value>
• Category defines a string pattern
• Value also called lexeme
• Value is a prefix (and hence, is a substring)
• Value matches on of the patterns that category 

defines

• Scan left-to-right in program text, look-ahead
to identify tokens.   

• Look-ahead buffer size determined by language 
design
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Scanners (Summary)

• Regular expressions are used to formally 
define the patterns specified by token classes.

• Some customization done while defining regular 
expressions: 1) Match the longest substring possible 2) 
Handle errors

• Tools such as Flex and ANTLR convert regular 
expressions to code. The code is your scanner 
implementation

• The implementation typically converts regular 
expressions to Finite Automata (special kind of 
state diagram)

• Automata are coded using efficient algorithms (E.g. Table-
lookup method )

• Efficient algorithms exist for substring matching 
(requiring single-pass over input program text)

• Aho-Corasic, Knuth-Morris-Pratt (KMP)
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Parsers - Overview

• Also called syntax analyzers

• Determine two things:
1. Is a program syntactically valid? 

(Analogy) is an English language sentence 
grammatically correct? 

2. What is the structure of programming language 
constructs? E.g. does the sequence* 

IF, ID(a), OP(<), ID(b), {, ID(a), 
ASSIGN, LIT(5), }}   

refer to an if statement?

(Analogy) diagramming English sentences
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if (a < 4) {
b = 5

}

* Correponding program text:



Parsers - Overview

• Input: stream of tokens

• Output: Parse tree 
• sometimes implicit

if ( ID(a) OP(<) LIT(4) )

{ ID(b) = LIT(5) }

Stream of tokens:

Parse tree:
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stmt
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Parsers – what do we need to know?

1. How do we define language constructs? 

• Context-free grammars

2. How do we determine: 1) valid strings in the 
language? 2) structure of program?

• LL Parsers, LR Parsers

3. How do we write Parsers?

• E.g. use a parser generator tool such as Bison
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Languages

• A language is (possibly infinite) set of strings

• Regular expressions specify regular languages. However, 
regular languages are weak formal languages to describe 
the features of a practical programming language.
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0
0

The FA shown accepts all string with odd 
number of 1s. 

weakness: regular expressions can’t describe a string of the form: { (i )i | i>=1}

Regular expressions can describe strings specifying parity:
{ mod k | k=# states in FA}

What set of strings does this FA accept?

What is the regular expression for the FA?

(0*10*)(10*10*)*



Regular Languages

• Regular expressions can’t describe a string of the form: 

{ (i )i | i>=1}

Nested structures:

E.g. Parenthesized expressions

((( int x; )))

IF
IF
IF
FI

FI
FI 

Programming language syntax is i.e. recursive
((2+3)*5)
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Context Free Grammar (CFG)

• Natural notation for describing recursive structure definitions. 
Hence, suitable for specifying language constructs.

• Consist of:

• A set of Terminals (T)

• A set of Non-terminals (N)

• A Start Symbol (S∈N)

• A set of Productions (X -> Y1..YN) ( aka. rules)

P:X     Y1Y2Y3..YN
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X∈N, Yi∈ N ⋃ T ⋃ ϵ/λ



Context Free Grammar (CFG)

• Grammar G = (T, N, S, P)

E.g. G = ({a,b}, {S, A, B}, S, {S  AB, A  Aa

A  a, B  Bb, B  b})

• Implicit meanings

• First rule listed in the set of productions contains start symbol (on the left-
hand side)

• In the set of productions, you can replace the symbol X (appearing on the 
right-hand side only) with the string of symbols that are on the right-hand 
side of a rule, which has X (on the left-hand side)
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Context Free Grammar (CFG)

1. Begin with only S as the initial string

2. Replace S

• S replaced with AB

3. Repeat 2 until the string contains only terminals

i. AB replaced with aB

ii. aB replaced with ab

G = (T, N, S, P)
P:{ S->AB, 

A->Aa,
A->a, 
B->Bb, 
B->b }

Summary: we move from S to a string of terminals through a series of transformations:

α0-> … -> αn where α1 . . . αn are strings

α0-> αn
*Shorthand notation:
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Detour: Context-Sensitive Grammar

• Can have context-sensitive grammar and languages 
(think: aB->ab)

• Cannot replace right-hand side with left-hand side irrespective of the 
context.

• E.g. aB->ab lays down a context: ‘a’ must be a prefix in order to 
transform the string “aB” to a string of terminals “ab”

• ccaBb can be replaced by ccabb

Is grammar G context-free?

G = (T, N, S, P)
P:{ S->AB, 

A->Aa,
A->a, 
B->Bb, 
B->b }
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Slide courtesy: Milind Kulkarni

A -> Aa

| a
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Alternative notation for two 
productions A->Aa and A->a

(Summary)
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Language of the Grammar

• Language L(G) of the context-free grammar G

• Set of strings that can be derived from S

• {a1a2a3..aN |  ai∈ T Ɐ i and                               }

• Is called context-free language

• All regular languages are context-free but not vice-versa.

• Can have many grammars generating same language.

S-> a1a2a3..aN
*
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String Derivations: Does a string 
belong to the Language? 

• How do we apply the grammar rules to determine the 
acceptability of a string? (i.e. the string belongs to the language, L(G), 
specified by the CFG G)

• Begin with S

• Replace S

• Repeat till string contains terminals only. Why terminals only?

• Notation:
• We will use Greek letters to denote strings containing non-terminals 

and terminals

• Derivations: sequence of rules applied to produce the string of 
terminals

L(G) must contain strings of terminals only
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CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string 
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS323, IIT Dharwad
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Exercise

Which of the below strings are accepted by the 
grammar:

1. abcba

2. abcbca

3. abba   

4. abca

1: A ->  aAa
2: A ->  bBb 
3: A ->  λ
4: B ->  cA
5: B ->  λ

1->2->4->3

1->2->5

CS323, IIT Dharwad
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Derivations and Parse Trees

• Recall: Derivation is a sequence of rules applied to 
produce a string

• S -> α0 -> α1 -> α2 -> . . . ->αn

• A derivation defines a parse tree

• Parse tree is an alternative way to gather information on 
how the string was derived

• A parse tree may have many derivations (think: different 
permutations of α )
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Start with E, the start symbol Parse Tree

EE

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Replace E with E + E Parse Tree

E

E E+

E
E+E

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 2: Replace E with E * E Parse Tree

E

E E+

E E*

E
E+E
E*E+E
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26

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id Parse Tree

E

E E+

E E*

id

E
E+E
E*E+E
id*E+E
id*id+E

idCS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id Parse Tree

E
E+E
E*E+E
id*E+E
id*id+E
id*id+id

E

E E+

E E*

id

id

idCS323, IIT Dharwad
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Derivations and Parse Trees

• Note in previous slides:
• Replacement done on left-most non-terminal in the 

string  - called left-most derivation

• Terminals at leaves and non-terminal as interior nodes

• Inorder traversal of leaves produces input string 
id*id+id E

E E+

E E*

id

id

id

CS323, IIT Dharwad
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Derivations and Parse Trees

• Note in previous slides:
• Replacement done on left-most non-terminal in the 

string  - called left-most derivation

• Terminals at leaves and non-terminal as interior nodes

• Inorder traversal of leaves produces input string 
id*id+id

• Parse tree shows association of operations. Input string 
doesn’t

• * associated with identifiers in the subtree

(id * id)+id

E

E E+

E E*

id

id

id

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the same grammar (having the following rules):

• Produce derivations for the string: id*id+id
• Using right-most derivations

i.e. replace the right-most non-terminal

1: E -> E + E 
2:    | E * E 
3:    | id

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Start with E, the start symbol

Parse Tree
E

E

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 2: Replace E with E+E

Parse Tree
E
E+E

E

E E+
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Replace E with id

Parse Tree
E
E+E
E+id

E

E E+

id
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with E * E

Parse Tree
E
E+E
E+id
E*E+id

E

E E+

id
E E*
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id

E

E E+

idE E*

idCS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E+E
E+id
E*E+id
E*id+id
id*id+id

E

E E+

idE E*

ididCS323, IIT Dharwad



• We get the same parse tree using left-most and right-most 
derivations.

• Every parse tree has left-most and right-most (and any random 
order) derivations.
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E

E E+

idE E*

idid

Derivations and Parse Trees
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• We get the same parse tree using left-most and right-most 
derivations.

• Every parse tree has left-most and right-most (and any random 
order) derivations.

• But there could be a string (or more than one strings) for which there 
exists derivations that would get different parse trees 

39

E

E E+

idE E*

idid

Derivations and Parse Trees
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Start with E, the start symbol

Parse Tree
E

E

CS323, IIT Dharwad
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 2: Replace E with E*E

Parse Tree
E
E*E

E

E E*

Earlier it was replace E with E+E
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 1: Replace E with E+E

Parse Tree
E
E*E
E*E+E

E

E E*

E E+
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Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id

E

E E*

E E+

idCS323, IIT Dharwad



44

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id

E

E E*

E E+

id idCS323, IIT Dharwad



45

Derivations and Parse Trees

• Consider the grammar with the following rules:

• Produce derivations for the string: id*id+id

1: E -> E + E 
2:    | E * E 
3:    | id

Apply 3: Replace E with id

Parse Tree
E
E*E
E*E+E
E*E+id
E*id+id
id*id+id

E

E E*

E E+

id

id

idCS323, IIT Dharwad



• Input string: id*id+id

• Inorder traversal of leaves in both trees produces the 
same input string

46

E

E E*

E E+

id

id

id

E

E E+

E E*

id

id

id

Derivations and Parse Trees

nowearlier
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Ambiguous Grammar

• Grammar that produces more than one parse tree for 
some string

1: E -> E + E 
2:    | E * E 
3:    | id
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Ambiguity – what to do?

• Ignore it (let it be ambiguous)
• Give hints to other components of the compiler on how to 

resolve it 

• Fix it (Manually)
• May make the grammar complicated and difficult to 

maintain
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Ambiguity – ignore

• Grammar: E -> E + E | id input:id+id+id

E

E+

id

id id

E

E E+

id
E E+

id id

E->E+E E->E+E

(left associative for +. So, produces the 

parse tree on the right)
CS323, IIT Dharwad

E->id+E

E->id+E+E

E->id+id+E

E->id+id+id

Matches the input, which would be 
evaluated (later) as:

E

E E+

E->E+E+E
E->id+E+E

E->id+id+E

E->id+id+id

(id+id)+idid+(id+id)

%left + Provide hint (in Bison). Associativity declaration.
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Ambiguity - ignore

• E -> E + E | E * E | id

E

E E+

id
E E*

id id

E->E+E
E->id+E
E->id+E*E
E->id+id*E
E->id+id*id

Produces  
tree for: 
id+(id*id)

E

E E*

id
E E+

id id

E->E*E
E->E+E*E
E->id+E*E
E->id+id*E
E->id+id*id

Produces  
tree for: 
(id+id)*id

CS323, IIT Dharwad

Tells that * has higher precedence over + and both are left 
associative. So, we get the tree on left. 

%left +
%left *
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Ambiguity – fixing

• Rewrite                           as:

E->E’+E
E’->id*E’
E’->id
E->E’
E’->id

E -> E’ + E | E’
E’ -> id * E’ | id 

E -> E + E 
| E * E 
| id

E

E’ E+

id E’* E’

id id

is the above sequence left-most or right-most derivation?

CS323, IIT Dharwad

| (E) * E’ | (E)

If you want to handle parenthesized 
expressions such as (id+id)*id

- E controls generation of +
- E’ controls generation of *

Parse tree for input id*id+id

*’s are always nested deeper in the parse tree.



52

Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse tree(s) for the 
following  input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2 
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Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the 
following  input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2 

CS323, IIT Dharwad
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Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the 
following  input: if e1 then if e2 then s1 else s2

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2 

CS323, IIT Dharwad
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Ambiguity Fixing - Exercise

Exercise: Is this grammar ambiguous? Draw parse trees for the 
following  

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2

input: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

e1

STMT

if
STMT

EXPR

then

else
STMT

e2
s1

s2

STMT

if EXPR
then

else
STMT

e1
s2

STMT

if EXPR
then

e2

STMT

s1
CS323, IIT Dharwad
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Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

e1

STMT

if
STMT

EXPR

then

else
STMT

e2
s1

s2

CS323, IIT Dharwad
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Ambiguity Fixing - Exercise

Exercise: Which if is the else associated with?
String: if e1 then if e2 then s1 else s2

STMT

if EXPR
then

else
STMT

e1
s2

STMT

if EXPR
then

e2

STMT

s1

CS323, IIT Dharwad
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Ambiguity Fixing - Exercise

Exercise: Rewrite the grammar to make it unambiguous.

1: STMT -> if EXPR then STMT  
2:      |  if EXPR then STMT else STMT
3:      |  s1 
4:      |  s2 
5: EXPR -> e1 | e2

CS323, IIT Dharwad
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CFG and Parsers

• Is it enough if parsers answer “yes” or “no” to check if a string 
belongs to context-free language?

• Also need a parse tree

• What if the answer is a “no”?

• Handle errors

• How do we implement CFGs?

• E.g. Bison

CS323, IIT Dharwad

Next
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Error Handling

• Objective: detect invalid programs and provide 

meaningful feedback to programmer

• Report errors accurately

• Recover from errors quickly

• Don’t slow down compilation
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Error Types

• Many types of errors:

• Lexical –

• Syntactic –

• Semantic –

• Logical –

CS323, IIT Dharwad

extra brace inserted {

float sqr; sqr(2); 
//use variable name with function 

call syntax

use = instead of ==  

int 9abc; //invalid identifier
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Error Handling - Types

1. Panic mode

2. Error production

3. Automatic local or global correction

CS323, IIT Dharwad
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Panic Mode Error Handling

• Simplest, most popular

• Discards tokens until one from a set of synchronizing 

tokens is found 

• Synchronizing tokens have a clear role

e.g. semicolons, braces

• E.g. i= i++j  

policy: while parsing an expression, discard all tokens 

until an identifier is found. This policy skips the additional +

• Specifying policy in bison: error keyword

E -> E + E | (E) | id | error id | error

CS323, IIT Dharwad
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Error Productions

• Anticipate common errors

– 2 x instead of 2 *

• Augment the grammar

– E -> EE | …

• Disadvantages:

– Complicates the grammar
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Error Corrections

• Rewrite the program – find a “nearby” correct 

program
– Local corrections – insert a semicolon, replace a comma with 

semicolon etc.

– Global corrections – modify the parse tree with “edit distance” 

metric in mind

• Disadvantages?

– Implementation difficulty

– Slows down compilation

– Not sure if “nearby” program is intended
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Parsers – what do we need to know?

1. How do we define language constructs? 

• Context-free grammars

2. How do we determine: 1) valid strings in the 
language? 2) structure of program?

• LL Parsers, LR Parsers

3. How do we write Parsers?

• E.g. use a parser generator tool such as Bison
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Top-down Parsing

Slide courtesy: Milind Kulkarni
CS323, IIT Dharwad
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Top-down Parsing

• Also called recursive-descent parsing

• Equivalent to finding the left-derivation for an 

input string

– Recall: expand the leftmost non-terminal in a parse 

tree

– Expand the parse tree in pre-order i.e., identify 

parent nodes before children

CS323, IIT Dharwad



72

Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Start with S

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

CS323, IIT Dharwad
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 1

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 2

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read
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Top-down Parsing

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

No more non terminals! 
String doesn’t match. 
Backtrack.
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Step Input string Parse tree

1 cad S

2 cad

3 cad

4 cad

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

S

c A d

S

c A d

a b

S

c A d

a

: next symbol to 

be read
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Top-down Parsing

1: S -> cAd
2: A -> ab 
3:    | a

String: cad

Predict rule 3

Step Input string Parse tree

1 cad S

2 cad

4 cad

S

c A d

S

c A d

a

S

c A d

S

c A d

a

S

c A d

S

c A d

a

: next symbol to 

be read
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Top-down Parsing – Table-driven Approach

1: S -> F
2: S -> (S + F)
3: F -> a

string: (a+a)

( ) a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.
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Top-down Parsing – Table-driven Approach

1: S -> F
2: S -> (S + F)
3: F -> a

• Table-driven (Parse Table) approach doesn’t require 

backtracking

string: (a+a)

( ) a + $

S 2 - 1 - -

F - - 3 - -

string’: (a+a)$ Assume that the table is given.

But how do we construct such a table?
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Important Concepts: First Sets and 
Follow Sets
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First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { ? } Think of all possible strings derivable from S. 
Get the first terminal symbol in those strings 

or λ if S derives λ
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First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }

CS323, IIT Dharwad
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First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = {  ?  }

CS323, IIT Dharwad
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First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = { x, y, c }

CS323, IIT Dharwad
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First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = { x, y, c }
first (B) = {  ? }

CS323, IIT Dharwad
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First Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

first (S) = { x, y, c }
first (A) = { x, y, c }
first (B) = { b, λ }

CS323, IIT Dharwad
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = { ? } Think of all strings possible in the language

having the form ..Sa.. Get the following 

terminal symbol a after S in those strings or $
if you get a string ..S$

CS323, IIT Dharwad
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }

CS323, IIT Dharwad
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { ? }

CS323, IIT Dharwad
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c } e.g. xaAbc$, xaAc$

CS323, IIT Dharwad
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c } e.g. xaAbc$, xaAc$

What happens when you consider: A -> xaA or A -> yaA ?

CS323, IIT Dharwad
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c } e.g. xaAbc$, xaAc$

What happens when you consider: A -> xaA or A -> yaA ?

• You will get string of the form  A=>+ (xa)+A
• But we need strings of the form: ..Aa.. or ..Ab. or ..Ac..
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c }
follow (B) = { ? }
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Follow Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

follow (S) = {  }
follow (A) = { b, c }
follow (B) = { c }

CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { ? } = First(ABc$) if λ ∉ First(ABc$)
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }

x y a b c $

S 1 1 1

A

B

CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { ? }

x y a b c $

S 1 1 1

A

B

= First(xaA) if λ ∉ First(xaA)

CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }

x y a b c $

S 1 1 1

A 2

B

CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { ? }

x y a b c $

S 1 1 1

A 2

B

= First(yaA) if λ ∉ First(yaA)
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }

x y a b c $

S 1 1 1

A 2 3

B
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { ? }

x y a b c $

S 1 1 1

A 2 3

B

= First(c) if λ ∉ First(c)
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }

x y a b c $

S 1 1 1

A 2 3 4

B

CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { ? }

x y a b c $

S 1 1 1

A 2 3 4

B

= First(b) if λ ∉ First(b)
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }

x y a b c $

S 1 1 1

A 2 3 4

B 5

CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }
Predict (6) = { ? }

x y a b c $

S 1 1 1

A 2 3 4

B 5

= First(λ) ? CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }
Predict (6) = { ? }

x y a b c $

S 1 1 1

A 2 3 4

B 5

= First(λ) ? Follow(B)CS323, IIT Dharwad
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Predict Set - Example

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

Predict (1) = { x, y, c }
Predict (2) = { x }
Predict (3) = { y }
Predict (4) = { c }
Predict (5) = { b }
Predict (6) = { c }

x y a b c $

S 1 1 1

A 2 3 4

B 5 6

CS323, IIT Dharwad
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Computing Parse-Table

1) S -> ABc$
2) A -> xaA
3) A -> yaA
4) A -> c
5) B -> b
6) B -> λ

x y a b c $

S 1 1 1

A 2 3 4

B 5 6

first (S) = {x, y, c}
first (A) = {x, y, c}
first(B) = {b, λ}

follow (S) = {}
follow (A) = {b, c}
follow(B) = {c}

P(1) = {x,y,c}
P(2) = {x}
P(3) = {y}
P(4) = {c}
P(5) = {b}
P(6) = {c}

CS323, IIT Dharwad
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