CS323: Compilers

Spring 2023

Week 2: Scanners

* Also called lexers / lexical analyzers

Scanner - Overview

Recall: scanners

— See program text as a stream of letters

— break input stream up into a set of
tokens: Identifiers, reserved words

literals, etc.

\tif (a<4) {\n\t\tb=5\n\t}

m (O-eted-GoG)y

Source code
+

Scanner / Lexical

Analysis

[
Tokens

Parser / Syntax
Analysis

I
Syntax Tree

'

Semantic Actions

IR
+

Optimizer

IR
+

Code Generator

!

Executable
2

Scanner - Motivation

 Why have a separate scanner when you can
combine this with syntax analyzer (parser)?

— Simplicity of design
« E.g. rid parser of handling whitespaces

— Improve compiler efficiency
* E.g. sophisticated buffering algorithms for reading input

— Improve compiler portability
« E.g. handling *M character in Linux (CR+LF in Windows)

Scanner - Tasks

1. Divide the program text into substrings or lexemes
— place dividers

2. ldentify the class of the substring identified

— Examples of predefined categories: |dentifiers,
keywords, operators, etc.
* |dentifier — strings of letters or digits starting with a letter
Integer — non-empty string of digits
Keyword — ‘if’, “else’; “for” etc.
Blankspace-\t, \n, “°
Operator — (,), <, =, etc.

— Observation: substrings can be categoriezed i.e. follow some
pattern

Categorizing a Substring (English Text)

 What is the English language analogy for class?
— Noun, Verb, Adjective, Article, etc.

— In an English essay, each of these classes can have a
set of strings.

— Similarly, in a program, each class can have a set of
substrings.

Exercise

 How many tokens of class identifier exist in the
code below?

for(int i=0;i<10;i++) {
printf(“hello”);
}

Scanner Output

« A token corresponding to each lexeme
— Token is a pair: <class, value>

Program

A string / lexeme / substring of program text

E.g. int x

A 4

Scanner

tokens

A 4

Parser

9;

(Keyword, “int”),
(Identifier, “x”),
(ﬂ’:J)),

(Integer, “0”),

€€ e
J

Scanners — interesting examples

« Fortran (white spaces are ignored)
DO 5 I = 1,25 « DO Loop
DO 5 T = 1.25 « Assignment statement

* PL/1 (keywords are not reserved)
DECLARE (ARG1, ARG2, . . ., ARGN);

e CH++
Nested template: Quad<Square<Box>> b;
Stream input: std::cin >> bx;

Scanners — interesting examples
(discussion)

 How did we go about recognizing tokens in previous
examples?

— Scan left-to-right till a token Is identified

— One token at a time: continue scanning the remaining
text till the next token is identified...

— Soon...

We always need to to identify tokens

....but we want to minimize the amount of look-ahead
done to simplify scanner implementation

Scanners — what do we need to know?

1. How do we define tokens?
— Regular expressions
2. How do we recognize tokens?

— build code to find a lexeme that is a prefix and that
belongs to one of the classes.

3. How do we write lexers?

— E.g. use a lexer generator tool such as Flex

10

Scanner / Lexical Analyzer -
flowchart

Formalized through | Regular expressions

Lexical specification

e.g. Identifiers are letter followed by translated by
any sequence of digits or letters

produce

A

Implementation

Black-Box
E.g. Scanner Generators Tools

11

Scanner / Lexical Analyzer -
flowchart

Formalized through

Lexical specification

e.g. ldentifiers are letter followed by
any sequence of digits or letters

Regular expressions

translated by

Black-Box
Hand-written code

12

Scanner Generators

« Essentially, tools for converting regular
expressions into scanners

- Lex (Flex) generates C/C++ scanner program

— ANTLR (ANother Tool for Language Recognition)

generates Java program for translating program text
(JFlex Is a less popular option)

- Pylexer Is a Python-based lexical analyzer (not a
scanner generator). It just scans input, matches
regexps, and tokenizes. Doesn't produce any program.

13

Regular Expressions

 Used to define the structure of tokens

* Regular sets:

Informal: a set of strings defined by regular expressions

Formal: a language that can be defined by regular
expressions

Start with a finite character set or Vocabulary (V). Strings
are formed using this character set with the following
rules:

14

Regular Expressions

Strings are regular sets (with one element): pi 3.14159
— So is the empty string: A (¢ instead)

Concatenations of regular sets are regular: pi3.14159
— To avoid ambiguity, can use () to group regexps together

A choice between two regular sets is regular, using |-
(pi|3.14159)

O or more of a regular set is regular, using *: (pi)*

other notation used for convenience:
— Use Not to accept all strings except those in a regular set
— Use ? to make a string optional: x? equivalent to (x|A)

— Use + to mean 1 or more strings from a set: x+ equivalent to xx*

— Use [] to present a range of choices: [1-3] equivalent to
(1]2]3)

15

Regular Expressions for Lexical
Specifications

Digit: D = (0]1[2]3]4]5]6]7]8]9)

_etter: L = [A-Za-7) alternative definition: [0-9]
_iterals (integers or floats): -?D+(.D*)?
dentifiers: (_|L)(_|L|D)*

Comments (as in Micro): //Not(\n)*\n

More complex comments (delimited by ##, can
use # inside comment):

((#|\) Not(#))*

16

Lex (Flex)

Commonly used Unix scanner generator (superseded by
Flex)

Flex is a domain specific language for writing scanners

Features:
® Character classes : define sets of characters (e.g., digits)

® TJoken definitions : regex {action to take}

17

Lex (Flex)

lex.1 »Lexer Compiler »lex.yy.c
lex.yy.c » C Compiler » a.out
input stream > a.out » tokens

Lex (Flex)

 Format of lex.| (3 parts separated by %%)
format: name definition

Declarations « e.g. DIGIT [©-9]
Refer to DIGIT here

/using {} braces {DIGIT}
%% expands to ([0-9])

Translation rules

format: pattern action

e.g. {DIGIT}+ {printf(“INTLITERAL”);

7676
User code mentioned here copied as is to lex.yy.c

™ Auxiliary functions 0

Example: Lex (Flex)

DIGIT [0-9]
ID [a—z][a-20-9]*

oo
o°

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,
atoi(yytext));

}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g9)\n", yytext,
atof(yytext));

}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);

{ID} printf("An identifier: %s\n", yytext);

20

Lex (Flex)

The order in which tokens are defined matters!

Lex will match the longest possible token

e “ifa” becomes ID(ifa), not IF ID(a)

If two regexes both match, Lex uses the one defined first
e “if” becomes IF not ID(if)

Use action blocks to process tokens as necessary

® C(Convert integer/float literals to numbers

® Remove quotes from string literals

21

Demo

22

Documentation

Flex (manual web-version):

| exical Analysis With Flex, for Flex 2.6.2: Top
(westes.qithub.10)

Lex - A Lexical Analyzer Generator (compilertools.net)

ANTLR

23

http://web.mit.edu/gnu/doc/html/flex_1.html
https://westes.github.io/flex/manual/index.html#SEC_Contents
http://dinosaur.compilertools.net/lex/index.html
https://www.antlr.org/

Summary

« We saw what It takes to write a scanner:

— Specify how to identify token classes (using regexps)

— Convert the regexps to code that identifies a prefix of the
Input program text as a lexeme matching one of the
token classes

« Use tools for automatic code generation (e.g. Flex / ANTLR)

— How do the tools convert regexps to code? Finite Automata
OR

« Scanner code manually
24

Scanner- Implementation

Regular expressions

translated by

Black-Box

How does a tool such as Flex generate code?

25

Scanner - flowchart

Lexical specification

e.g. ldentifiers are letter followed by
any sequence of digits or letters

A 4

Regular expressions

v

Implementation "

A 4

NFA

A

Reduced DFA

DFA

26

Finite Automata

Another formal way to describe sets of strings (just
like regular expressions)

Also known as finite state machines / automata

Reads a string, either recognizes it or not

Two Features:

— State: Initial, matching / final / accepting, non-matching
— Transition: a move from one state to another

27

Finite Automata

* Regular expressions and FA are equivalent*
/\

A A 1

initial state .
state matching state

Exercise: what is the equivalent regular expression for this FA?

* |gnoring the empty regular language

28

A transitions

® Transitions between states that aren’t triggered by seeing
another character

® (Can optiondlly take the transition, but do not have to

® (an be used to link states together

O—0O

Think of this as an arrow to a state without a label

29

Non-deterministic Finite Automata

* A FA is non-deterministic if, from one state reading a single

character could result in transition to multiple states (or has
A transitions)

« Sometimes regular expressions and NFAs have a close
correspondence

a(bb)+a 30

Building a FA from a regexp

Expression FA
2 @
A 8?\ @
o O O-OHO-01-0
AlB Cn gg@
A — ”‘OTODC@

31

“Running” an NFA

® |Intuition: take every possible path through an NFA

Think: parallel execution of NFA
Maintain a “pointer” that tracks the current state

Every time there is a choice,“split” the pointer, and have
one pointer follow each choice

Track each pointer simultaneously
® |fa pointer gets stuck, stop tracking it

® |f any pointer reaches an accept state at the end of
Input, accept

32

Running an NFA - Example
02020202
={) {%ﬂ abab |abbb
a b b b
O e () S g S g
* NFAs are concise but slow

« Example:

— Running the NFA for input string abbb requires exploring all
execution paths

*Example taken from https://swtch.com/~rsc/regexp/regexpl.htmil

33

https://swtch.com/~rsc/regexp/regexp1.html

Running an NFA - Example

a b a b
= =00
=] g% abab | abbb
g a b b b)
e e e =
« NFAs are concise but slow

« Example:

— Running the NFA for input string abbb requires exploring all
execution paths

— Optimization: run through the execution paths in parallel

« Complicated. Can we do better?

34

Deterministic Finite Automata

« Each possible input character read leads to at most one
new state

e Can convert NFAs to deterministic finite automata (DFAs)
® No choices — never a need to “split” pointers

e |nitial idea: simulate NFA for all possible inputs, any time
there is a new configuration of pointers, create a state to
capture it

® Pointers at states |, 3 and 4 — new state {l, 3,4}

e Trying all possible inputs is impractical; instead, for any new
state, explore all possible next states (that can be reached
with a single character)

® Process ends when there are no new states found

® This can result in very large DFAs!

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

OGO

36

DFA reduction

® DFAs built from NFAs are not necessarily optimal

® May contain many more states than is necessary

(ab)+ = (ab)(ab)*

() :

37

DFA reduction

® |ntuition: merge equivalent states

Two states are equivalent if they have the same
transitions to the same states

® Basic idea of optimization algorithm

Start with two big nodes, one representing all the final
states, the other representing all other states

Successively split those nodes whose transitions lead to
nodes in the original DFA that are in different nodes in
the optimized DFA

38

Implementation

« While doing lexical analysis, we need extensions to regular
expressions

— Match as long a substring as possible

— Handle errors
« Good algorithms for substring matching

— Require only a single pass over the input
« Using Tries
— Few operations per character

« Table look-up method -

Implementation: Transition Tables

A table encodes states and transitions of FA

— 1 row per state

— 1 column per character in the alphabet

— Table entry: state (label)

State/
Character

1

2

3

40

Example 1

/Q /%
TN

NFA OR DFA?

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char

a

1

2

42

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char

a

1

2

2

43

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a C
1 2 3
2 4
3 - 3,4 5

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a

1 2

1|l w|o

2
3 - 3,4
4

6,7 4

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a C
1 2 3
2 4
3 3,4 5
4 6,7 4 -
3,4 6,7 3,4 5

46

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a C
1 2 3
2 4
3 3,4 5
4 6,7 4 -
3,4 6,7 3,4 5
5 7 5 -

47

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a C
1 2 3
2 4
3 3,4 5
4 6,7 4 -
3,4 6,7 3,4 5
5 7 5 -
6,7 - 6,7 6,7

48

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a C
1 2 3
2 4
3 3,4 5
4 6,7 4 -
3,4 6,7 3,4 5
5 7 5 -
6,7 - 6,7 6,7
7 6 6

49

Example 1. NFA -> DFA

/@— /%

%‘*9

State/ Char | a C
1 2 3
2 4
3 - 3,4 5
4 6,7 4 -
3,4 6,7 3,4 5
5 7 5

6,7 - 6,7 6,7
7 - 6

6 - 7 7

Example 1: DFA

State|a |b C
1 2 3
2 3 4
3 - 3,4 5
4 6,7 |4 -
3,4 6,7 | 3,4 5
5 7 |5 -
6,7 - 6,7 6,7
7 - 6 6
6 - 7 7

51

Example 2: NFA -> DFA

NFA OR DFA?

Example 2: NFA -> DFA

State/ 0 1 Final? Comments
char
A {A,B} A No In state A, on seeing input 0, we have a choiceto

go to either state Aor B

53

Example 2: NFA -> DFA

State/ 0 1 Final? Comments

char

A {A,B} A No In state A, on seeing input O, FA gives us a choice
to go to either state A or state B

A.B {AB,C} A No In state A,B we have two component states A and

B. From A on input O, FA takes us to states A and B.
From B on O FA takes us to C. So, the set of states
reachable fromA,B on input 0 is A,B,C. Similarly,
forinput 1, from A FAtakes us to A. From B on
input 1, FA gets stuck in an error state.

54

Example 2: NFA -> DFA

State/ 0 1 Final? Comments

char

A {A,B} A No In state A, on seeing input O, FA gives us a choice
to go to either state A or state B

AB {AB,C} A No In state A,B we have two component states A and

B. From A on input O, FA takes us to states A and B.
From B on O FA takes us to C. So, the set of states
reachable fromA,B on input 0 is A,B,C. Similarly,
forinput 1, from A FAtakes us to A. From B on
input 1, FA gets stuck in an error state.

AB,C {AB,C} A Yes One of the component states C is final in the FA.
Hence, A,B,C is a final state.

Example 2: NFA -> DFA

State/ 0 1 Final? Comments

char

A {A,B} A No In state A, on seeing input O, FA gives us a choice
to go to either state A or state B

A B it e * MRSRSEBAIgcS A and

Falies A and B.
From B on O FA takes us to C. So, the set of states
reachable fromA,B on input 0 is A,B,C. Similarly,
forinput 1, from A FAtakes us to A. From B on
input 1, FA gets stuck in an error state.

AB,C {AB,C} A Yes One of the component states C is final in the FA.
Hence, A,B,C is a final state.

Example 2: DFA

State/ O 1 Final ?
char
A {A, B} A No

AB {AB,C} A No
AB,C {AB,C} A Yes

57

Example 1: DFA

a a State | a b C
, b
c Q==
b . 3 - |34 |5
a 4 67 | 4]
() (j @ @ 34 |67(34 |5
b b, O 5 7 |s i
& a d a b’C 67 |- |67 |67
~< 7 - |6 6
6 - |7 7

What states can be merged?

58

Example 1: Reduced DFA

What states can be merged?

State/ Char | a b C
1 2 3
2 3 4
3 3,4 5
4 6,7 4 -
3,4 6,7 3,4 5
5 7 5 _
6,7 6,7 6,7
7 6 6
6 7 7

59

Example: Reduced DFA

What states can be merged?

Definition 8 (Equivalence of states) Let M = (Q, X, 9, qo, I') be a DFA. We say that two states
p,q € (Q are equivalent, and we write it p = q, if for every string x € X* the state that M reaches
from p given x is accepting if and only if the state that M reaches from q given x is accepting.

State/ Char | a b C

1 2 - 3

2 3 - 4

3 - 3,4 5

4 6,7 4 -

3,4 6,7 3,4 5

5 7 5 -

6,7 - 6,7 6,7

7 - 6

6 - 7 7 60

Example: Reduced DFA

What states can be merged?

6 and 7
State/ Char | a b C
1 2 3
2 3 4
3 3,4 5
4 6,7 4
3,4 6,7 3,4 5
5 6 7 M 5
6,7 6,7 6,7
6 7 M 6 7 M 6 7 M

61

Example: Reduced DFA

What states can be merged?

6,7and6 7 M
State/ Char a b C
1 2 3
2 3 4
3 3,4 5
4 6,76 7 M |4
3,4 6,76 7 M |34 5
5 6,76 7 M |5
6,7 6 7 M 6,76 7 [6,76 7 M
M

62

Example: Reduced DFA

What states can be merged?

4and 5

State/ Char | a b C

1 2 - 3

2 3 - 4 5 M

3 3,4 4 5 M

4 5 M 6,76 7 M |45 M -

3,4 6,76 7 M |34 4 5 M
6,76 7 M 6,76 7 M |67 6 7 M

63

Example: Reduced DFA

Exercise

 Reduce the DFA
Q~O~0--0
d
O-0-0

DFA Reduction (split-node)

 Algorithm

— Start with all final states in one node and all non-final in another

node. Call Split()
void Split(set of states* ss) {

do {
e Let S be any merged state corresponding to {s;, .., s,} and

Let ‘c’ be any alphabet

e Let t,, .., t, be the successor states to {s;, .., s,} under
(CJ

e If (t;, .., t, do not all belong to the same merged state) {
Split S into new states such that s; and s; remain in the
same merged state if and only if t; and t; are in the same

merged state

} while(more splits are possible)
66

DFA Reduction (split-node)

» Start with two big nodes @“’@'b"@"’

— All final states in one and all

non-final in another \G)-b»@-c-»

67

DFA Reduction (split-node)

» Split 3,6 from 1,2, 3, 5, 6 @#@M@_ﬁ
— 3,6 have commonsuccessor ‘

under ‘c’. 1,2,5 have no \G)—b-»@c-»

successorunder ‘Cc’

68

DFA Reduction (split-node)

+ Split 1 from 1,2, 5 Q»@—b—»@—c—»
— 2 and 5 go to merged state 3,6 °

under ‘b’. 1 does not. \G)—b-»@c-»

(D (&

69

DFA Reduction (split-node)

* No more splits possible @1*@'”@“"
©--0--0

oloRoRo

DFA Program

® Using a transition table, it is straightforward to write a
program to recognize strings in a regular language

state = initial_state; //start state of FA
while (true) {

next_char = getc();

1t (next_char == EOF) break;
next_state = T[state][next_char];
1t (next_state == ERROR) break;
state = next_state;

(1s_final_state(state))
//recognized a valid string

else

handle_error(next_char);

i1

Alternate implementation

® Here’s how we would implement the same program
“conventionally”

next_char = getc();

while (next_char == ‘a’) {
next_char = getc();
1f (next_char !'= ‘b’) handle_error(next_char);
next_char = getc();
1f (next_char !'= ‘c’) handle_error(next_char);
while (next_char == ‘c’) {

next_char = getc();
1T (next_char == EOF) return; //matched token
1T (next_char == ‘a’) break;
1T (next_char !'= ‘c’) handle_error(next_char);
¥
ks

handle_error(next_char);

Handling Lookahead

« E.g. distinguish between int a and inta

— If the next char belongs to current token, continue

— Else next char becomes part of next token

 Multi-character lookahead?

— E.g.DO I =1, 100 (loop)vs.DO I = 1.100 (variable
assignment)

— Solutions: Backup or insert special “action” state
D D
-Or-0--Or-

73

Handling Lookahead

« E.g. distinguish between int a and inta

— If the next char belongs to current token, continue

— Else next char becomes part of next token

. 123..44
 Multi-character lookahead?

— E.g.DO I =1, 100 (loop)vs.DO I = 1.100 (variable
assignment)

— Solutions: Backup or insert special “action” state

o088 M

General approach

Remember states (T) that can be final states
Buffer the characters from then on

If stuck in a non-final state, back up to T, restore buffered
characters to stream

Example: | 2.3e+q

75

Error Recovery

® What do we do if we encounter a lexical error (a character
which causes us to take an undefined transition)?

® Two options

Delete all currently read characters, start scanning from
current location

Delete first character read, start scanning from second
character

® This presents problems with ill-formatted strings
(why?)

® One solution: create a new regexp to accept runaway
strings

76

Discussion

 Why separate class (token type) for each
keyword?
— Efficiency

« Parsers take decisions based on token types. When decision
making not possible, switch to token values, which are
strings. String comparisonis more expensive

— Compatibility with parser generators
« Some parser generators don’t support semantic predicates

— Autocomplete / Intellisense

77

Discussion - Efficiency

switch(curToken.type) {
case IF: parse_if stmt();
break;

¥

switch(curToken.type) {
case KEYWORD: if(curToken.value==“if”);
parse_if stmt();

78

Discussion - Compatibility

statement : IF condition body (ELSE body)? FI

statement : if condition body (else body)? fi

KEYWORD: IF | ELSE | FI

79

Suggested Reading

Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D.Ullman:

Compilers: Principles, Techniques, and Tools, 2/E, AddisonWesley
2007

— Chapter 3 (Sections: 3.1, 3,3, 3.6 t0 3.9)

Fisher and LeBlanc: Crafting a Compiler with C
— Chapter 3 (Sections 3.1 to 3.4, 3.6, 3.7)

80

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Scanner - Overview
	Slide 3: Scanner - Motivation
	Slide 4: Scanner - Tasks
	Slide 5: Categorizing a Substring (English Text)
	Slide 6: Exercise
	Slide 7: Scanner Output
	Slide 8: Scanners – interesting examples
	Slide 9: Scanners – interesting examples (discussion)
	Slide 10: Scanners – what do we need to know?
	Slide 11: Scanner / Lexical Analyzer - flowchart
	Slide 12: Scanner / Lexical Analyzer - flowchart
	Slide 13: Scanner Generators
	Slide 14: Regular Expressions
	Slide 15: Regular Expressions
	Slide 16: Regular Expressions for Lexical Specifications
	Slide 17: Lex (Flex)
	Slide 18: Lex (Flex)
	Slide 19: Lex (Flex)
	Slide 20: Example: Lex (Flex)
	Slide 21: Lex (Flex)
	Slide 22: Demo
	Slide 23: Documentation
	Slide 24: Summary
	Slide 25: Scanner- Implementation
	Slide 26: Scanner - flowchart
	Slide 27: Finite Automata
	Slide 28: Finite Automata
	Slide 29
	Slide 30: Non-deterministic Finite Automata
	Slide 31
	Slide 32
	Slide 33: Running an NFA - Example
	Slide 34: Running an NFA - Example
	Slide 35: Deterministic Finite Automata
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Implementation
	Slide 40: Implementation: Transition Tables
	Slide 41: Example 1
	Slide 42: Example 1: NFA -> DFA
	Slide 43: Example 1: NFA -> DFA
	Slide 44: Example 1: NFA -> DFA
	Slide 45: Example 1: NFA -> DFA
	Slide 46: Example 1: NFA -> DFA
	Slide 47: Example 1: NFA -> DFA
	Slide 48: Example 1: NFA -> DFA
	Slide 49: Example 1: NFA -> DFA
	Slide 50: Example 1: NFA -> DFA
	Slide 51: Example 1: DFA
	Slide 52: Example 2: NFA -> DFA
	Slide 53: Example 2: NFA -> DFA
	Slide 54: Example 2: NFA -> DFA
	Slide 55: Example 2: NFA -> DFA
	Slide 56: Example 2: NFA -> DFA
	Slide 57: Example 2: DFA
	Slide 58: Example 1: DFA
	Slide 59: Example 1: Reduced DFA
	Slide 60: Example: Reduced DFA
	Slide 61: Example: Reduced DFA
	Slide 62: Example: Reduced DFA
	Slide 63: Example: Reduced DFA
	Slide 64: Example: Reduced DFA
	Slide 65: Exercise
	Slide 66: DFA Reduction (split-node)
	Slide 67: DFA Reduction (split-node)
	Slide 68: DFA Reduction (split-node)
	Slide 69: DFA Reduction (split-node)
	Slide 70: DFA Reduction (split-node)
	Slide 71: DFA Program
	Slide 72
	Slide 73: Handling Lookahead
	Slide 74: Handling Lookahead
	Slide 75
	Slide 76
	Slide 77: Discussion
	Slide 78: Discussion - Efficiency
	Slide 79: Discussion - Compatibility
	Slide 80: Suggested Reading

