
CS323: Compilers
Spring 2023

Week 13: Dataflow Analysis (liveness (recap),
Constant Propagation, Reaching Definitions, Available

Expressions)

CS323, IIT Dharwad 1

Recap: Liveness

• Variables are live if there exists
some path leading to its use

• Start from exit block and
proceed backwards against the
control flow to compute

A := 1
A = B

B := 1 C := 1

D := A+B

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

//set that contains all variables
used by block b

//set that contains all
variables defined by block b

2

LiveOut(b) =ڂi ∈Succ(b) LiveIn(i)

entry

exit

CS323, IIT Dharwad

3

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

Original CFG CFG with edges reversed (and
initialized) for backwards analysis: is X
live? (F=false, T=true)

F

F

F
F

F

F

F

F

Recap: Liveness

CS323, IIT Dharwad

4

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

F

F
F

F

F

F

F

X must be live here
(refer week11 slide)

Recap: Liveness

CS323, IIT Dharwad

5

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

F
F

F

F

F

F

X must be live here
(refer week11 slide)

Recap: Liveness

CS323, IIT Dharwad

6

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

F

F

F

F

X must be live here
(refer week11 slide)

Recap: Liveness

CS323, IIT Dharwad

7

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X must be live here
(refer Week11 slide)

Recap: Liveness

CS323, IIT Dharwad

8

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (refer Week11 slide).
No change in information.

Recap: Liveness

CS323, IIT Dharwad

9

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (refer Week11 slide).
No change in information.

Recap: Liveness

CS323, IIT Dharwad

10

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F X dead here (refer Week11 slide).
No change in information.

Recap: Liveness

Exercise: Repeat for Z and N CS323, IIT Dharwad

Constant Propagation

• Bigger problem size:
– Which lines using X could be replaced with a

constant value? (apply only constant
propagation)

– How can we automate to find an answer to
this question?

11

1. X := 2
2. Label1:
3. Y := X + 1
4. if Z > 8 goto Label2
5. X := 3
6. X := X + 5
7. Y := X + 5
8. X := 2
9. if Z > 10 goto Label1
10.X := 3
11.Label2:
12.Y := X + 2
13.X := 0
14.goto Label3
15.X := 10
16.X := X + X
17.Label3:
18.Y := X + 1

CS323, IIT Dharwad

Constant Propagation

• Problem statement:

– Replace use of a variable X by a constant K

• Requirement:

– property: on every path to the use of X, the last
assignment to X is: X=K

Same as: “is X=K at a program point?”
At any program point where the above property holds, we can apply
constant propagation.

CS323, IIT Dharwad 12

CS323, IIT Dharwad 13

CS323, IIT Dharwad 14

CS323, IIT Dharwad 15

CS323, IIT Dharwad 16

Symbolic Evaluation

• Associate with X one of the following values:

• Idea of symbolic execution: at all program points,
determine the value of X

CS323, IIT Dharwad 21

Value Meaning

⊥ (“bottom”) This statement never executes

K (“constant”) X = K

⊤ (“top”) X is not a constant

Constant Propagation

CS323, IIT Dharwad 22

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1X=1 X=1

X=1

X=4
X=1

X=⊤

X=⊤

If X=K at some program point, we can apply constant propagation (replace the
use of X with value of K at that program point)

Constant Propagation

• Determining the value of X at program points:

– Just like in Liveness Computation in a CFG, the information
required for constant propagation flows from one
statement to adjacent statement

– For each statement s, compute the information just
before and after s. C is the function that computes the
information:

C(X,s,flag)
//if flag=IN, before s what is the value of X

//if flag=OUT, after s what is the value of X

• Transfer function (pushes / transfers information from one
statement to another)

CS323, IIT Dharwad 23

Constant Propagation

• Determining the value of X at program points (Rule 1):

CS323, IIT Dharwad 24

…

If X=⊤ at exit of any of the predecessors, X=⊤ at the entrance of S

… …

s

X=⊤

p1 p2 p3

X=⊤

if C(pi,s,OUT)=⊤

for any i, then C(X,s,IN)=⊤

Constant Propagation

• Determining the value of X at program points (Rule 2):

CS323, IIT Dharwad 25

…

If X=K1 at one predecessor and X=K2 at another predecessor and
K1 ≠ K2, then X=⊤ at the entrance of S

… …

s

X=1

p1 p2 p3

X=⊤

if C(pi,s,OUT)=K1 and C(pj,s,OUT)=K2 and K1 ≠ K2 then C(X,s,IN)=⊤

X=4

Constant Propagation

• Determining the value of X at program points (Rule 3):

CS323, IIT Dharwad 26

…

If X=K at some of the predecessors and X= ⊥ at all other
predecessors, then X=K at the entrance of S

… …

s

X=1

p1 p2 p3

X=1

if C(pi,s,OUT)=K or ⊥ for all i then C(X,s,IN)= K

X=⊥X=1

Constant Propagation

• Determining the value of X at program points (Rule 4):

CS323, IIT Dharwad 27

…

If X= ⊥ at all predecessors, then X= ⊥ at the entrance of S

… …

s

X= ⊥

p1 p2 p3

X= ⊥

if C(pi,s,OUT)=⊥ for all i then C(X,s,IN)= ⊥

X=⊥X= ⊥

Constant Propagation

• Determining the value of X at program points (Rule 5):

CS323, IIT Dharwad 28

If X= ⊥ at entrance of s, then X= ⊥ at the exit of S

s
X= ⊥

if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥

X= ⊥

Constant Propagation

• Determining the value of X at program points (Rule 6):

CS323, IIT Dharwad 29

No matter what the value of X is at entrance of s(X:=K), X=K at the
exit of s

X=4

C(X,s(X:=K),OUT)=K

X=4

But previous slide said if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥. So, we give

priority to this.

Constant Propagation

• Determining the value of X at program points (Rule 7):

CS323, IIT Dharwad 30

In s, assignment to X is any complicated expression (not a constant
assignment).

X=f(..)

C(X,s(X:=f()),OUT)=⊤

X=⊤

But earlier slide said if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥. So, we give

priority to this.

Constant Propagation

• Determining the value of X at program points (Rule 8):

CS323, IIT Dharwad 31

Value of X remains unchanged before and after s(Y:=..) when s doesn’t
assign to X and X ≠ Y

Y=…

C(X,s(Y:=..),OUT)=C(X,s(Y:=..),IN)

E.g. X:=1

E.g. X:=1

Constant Propagation

• Putting it all together

1. For entry s in the program, initialize C(X,s,IN)=⊤ and
initialize C(X,s,IN)=C(X,s,OUT)=⊥ everywhere else

2. Repeat until all program points (i.e. any s) satisfy rules 1-8
1. Pick s in the CFG that doesn’t satisfy any one of rules 1-8 and

update information.

CS323, IIT Dharwad 32

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 33

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=⊥

X=⊥ X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 34

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=⊥ X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 35

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1 X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 36

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥

X=1 X=⊥

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 37

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥
X=⊥

X=⊥

X=⊥

X=1

X=1

X=⊥

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 38

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥

X=⊥

X=1

X=1

X=⊥

X=4

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 39

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥

X=⊥

X=1

X=1

X=1

X=4

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 40

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥

X=1

X=1

X=1

X=4

X=1

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 41

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊤

X=⊥

X=1

X=1

X=1

X=4

X=1

Constant Propagation

• Putting it all together

CS323, IIT Dharwad 42

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊤

X=⊤

X=1

X=1

X=1

X=4

X=1

Constant Propagation - Loops

CS323, IIT Dharwad 43

X := 1
B>0

Y := Z+W Y := 0

Y := 2*X
A<B

entry to basic block

exit from basic block

X=⊤

X=⊥

X=⊥ X=⊥X=⊥

X=⊥

X=⊥X=⊥

X=⊥

X=⊥

Ordering of information: Generalizing

• We have been executing with symbols ⊥, ⊤ , and K.
These are called abstract values

• Order these values as:

⊥ < K < ⊤

Can also be thought of as an ordering from least
information to most information

Pictorially:

⊤

⊥
CS323, IIT Dharwad 44

.. -1 0 1 ..

Ordering of information: Generalizing

• Least Upper Bound (lub) : smallest element
(abstract value) that is greater than or equal to
values in the input

– E.g. lub ⊥, ⊥ =⊥, lub ⊤, ⊥ = ⊤,lub −1, 1 = ⊤,
lub 1 ⊥ =?

– Rewriting rules 1-4: C(X,s,IN)=lub{C(pi,s,OUT) for all
predecessors i)}

– Also called as join operator. Written as: A ⊔ B

CS323, IIT Dharwad 45

Ordering of information: Generalizing

• Recall that in determining information at all program
points:
“2. Repeat until all program points (i.e. any s) satisfy rules 1-8

- Pick s in the CFG that doesn’t satisfy any one of rules 1-8 and
update information. “

– How do we know that this terminates?
• lub ensures that the information changes from lower value to

higher value

• In the constant propagation algorithm:

– ⊥ can change to constant and then to ⊤

– ⊥ can change to ⊤

– C(X, s, flag) can change at most twice

CS323, IIT Dharwad 46

Constant Propagation

• Exercise: what is the complexity of our constant
propagation algorithm?

= NumS* 4 (NumS = number of statements in the program).

- Per program point, we evaluate the C function.

- The C function changes value at most two times (initialized to ⊥ first and
then could change to K and then to ⊤).

- There are two program points (entry/IN and exit/OUT) for every statement.

CS323, IIT Dharwad 47

This is the complexity of the analysis per variable

How do we do the analysis considering all variables that exist in the program?

CS323, IIT Dharwad 48

Constant Propagation (Multiple Variables)

V

CS323, IIT Dharwad 49

Constant Propagation (Multiple Variables)

CS323, IIT Dharwad 50

CS323, IIT Dharwad 51

CS323, IIT Dharwad 52

Worklist

CS323, IIT Dharwad 53

CS323, IIT Dharwad 54

CS323, IIT Dharwad 55

CS323, IIT Dharwad 56

CS323, IIT Dharwad 57

CS323, IIT Dharwad 58

Reaching Definitions - Example

• Goal: to know where in a program each
variable x may have been defined when
control reaches block b

• Definition d reaches block b if there is a
path from point immediately following d
to b, such that the variable defined in d is
not redefined / killed along that path

1: i=m-1
2: j=n
3: a=u1

Out(b) = gen(b) ڂ (In(b) – kill(b))

//set that contains all statements
that may define some variable x in
b. E.g. gen(1:a=3;2:a=4)={2}

//set that contains all statements
that define a variable x that is
also defined in b. E.g.
kill(1:a=3; 2:a=4)={1,2} 59

In(b) =ڂi ∈Pred(b)Out(i)

entry

4: i=i+1
5: j = j -1

7: i=u3

exit

6: i=u3

CS323, IIT Dharwad

60CS323, IIT Dharwad

61CS323, IIT Dharwad

62CS323, IIT Dharwad

63CS323, IIT Dharwad

64CS323, IIT Dharwad

Generalization (Recap)

• Direction of the analysis:
– How does information flow w.r.t. control flow?

• Join operator:
– What happens at merge points? E.g. what operator to use Union or

Intersection?

• Transfer function:
– Define sets gen(b), kill(b), IN(b), OUT(b)

• Initializations?

CS406, IIT Dharwad 65

Available Expressions

• Goal: determine a set of expressions that have already been
computed.
– E.g. to perform global CSE

• Direction of the analysis:
– How does information flow w.r.t. control flow?

• Join operator:
– What happens at merge points? E.g. what operator to use Union or

Intersection?

• Transfer function:
– Define sets AvailIn(b), AvailOut(b), Compute(b), Kill(b)

• Initializations?

CS406, IIT Dharwad 66

CS406, IIT Dharwad 67

CS406, IIT Dharwad 68

CS406, IIT Dharwad 69

What is this piece
of code doing?

CS406, IIT Dharwad 70

Intermediate code (assuming int is 4 bytes):
(Ignore the temporary counter value for now)

available expression
{}

{“4*i”}

S1 ={“4*i”, “a+t6”}

S2 =S1 U {“4*j”}

set S1

S3 =S2 U {“a+t8”}

set S3

set S3

set S3

t7 = t6

a[t6] = t9

t10 = t8

a[t8] = x

Can be rewritten:

copy propagation

CS406, IIT Dharwad 71

Intermediate code (assuming int is 4 bytes):
(Ignore the temporary counter value for now)

available expression
{}

{“4*i”}

S1 ={“4*i”, “a+t6”}

S2 =S1 U {“4*j”}

set S1

S3 =S2 U {“a+t8”}

set S3

set S3

set S3

t7 = t6

a[t6] = t9

t10 = t8

a[t8] = x

apply dead-code elim.

CS406, IIT Dharwad 72

Intermediate code
(after local CSE+copy prop.+dead-code elim.)

CS406, IIT Dharwad 73

Intermediate code (assuming int is 4 bytes):

(assume next temporary counter value=11)

t12=t11

t15=t13
a[t13]=x

a[t11]=x

CS406, IIT Dharwad 74

Intermediate code (assuming int is 4 bytes):

after dead-code
elim.

t12=t11

t15=t13
a[t13]=x

a[t11]=x

CS406, IIT Dharwad 75

t11=4*I
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

Intermediate code
(after local CSE+copy prop.+dead-code elim.)

• CFG for quicksort

CS406, IIT Dharwad 76

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 77

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 78

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

merge point

initializing for CSE

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 79

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

initializing for CSE
Set U={“m-1”,
“4*n”,
“a+t1”,
“4*i”,

“i+1”,
”a+t2”,
”j-1”,
”4*j”,
”a+t4”,
”a+t6”,
”a+t8”,
”a+t7”,
”a+t11”,
”a+t13”
}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 80

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

compute(B1)
aka. gen(B1) =
{ “m-1”, “4*n”,
“a+t1”}

kill(B1) = {
“a+t1”}

Out(B1) =
gen(B1) U IN(B1) – kill(B1)

Out(B1) =
{ “m-1”,
“4*n”,
“a+t1”
}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 81

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B2) = {
“4*i”, “a+t2”}

kill(B2) = {
“4*i”, “a+t2”}

IN(B2) = set U ∩
OUT(B1)
={“m-1”,”4*n”,
”a+t1”}

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 82

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B2) = {
“4*i”, “a+t2”}

kill(B2) = {
“4*i”, “a+t2”}

OUT(B2) =
={{“4*i”, ”a+t2”} U
{“m-1”, “4*n”,
a+t1”} }

Out(B2) =
gen(B2) U IN(B2) – kill(B2)

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 83

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B3) = {
“4*j”, “a+t4”}

kill(B3) = {
“4*j”, “a+t4”}

IN(B3) =
={U ∩ OUT(B2)} =
OUT(B2)

• CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad 84

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B3) = {
“4*j”, “a+t4”}

kill(B3) = {
“4*j”, “a+t4”}

OUT(B3) =
={“4*j”, “a+t4” U
OUT(B2)}

CS406, IIT Dharwad

85

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B5) = {
“4*i”, “a+t6”,
“4*j”, “a+t8”}

kill(B5) = {
“a+t8”, “a+t6”}

Initially, IN(B5) =
=OUT(B4)=OUT(B3)

IN(B5)=“4*j”, “a+t4”, “4*i”, “a+t2”, “m-1”, “4*n”, “a+t1”

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t6=t2
x=a[t2]
t8=4*j
t9=a[t8]
a[t2]=t9
a[t8]=x
goto B2

x=a[t2]
t8=t4
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=t3
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=t3
a[t2]=t5
a[t4]=x
goto B2

Dataflow Analysis – Problem Categorization

• All path problem:
– we want the property to hold at all the paths reaching a program

point.

• Any path problem:
– we want the property to hold at some path reaching a program point.

Orthogonal to the above categorization we can have:

• Forward flow problem:
– Transfer of information done along the direction of the control flow

• Backward flow problem:
– Transfer of information done opposite to the direction of the control

flow

CS406, IIT Dharwad 86

Exercises

• Analysis of uninitialized variables

• Analysis of available expressions

CS323, IIT Dharwad 87

• What is the direction of analysis?
• What is the transfer function?

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Recap: Liveness
	Slide 3: Recap: Liveness
	Slide 4: Recap: Liveness
	Slide 5: Recap: Liveness
	Slide 6: Recap: Liveness
	Slide 7: Recap: Liveness
	Slide 8: Recap: Liveness
	Slide 9: Recap: Liveness
	Slide 10: Recap: Liveness
	Slide 11: Constant Propagation
	Slide 12: Constant Propagation
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 21: Symbolic Evaluation
	Slide 22: Constant Propagation
	Slide 23: Constant Propagation
	Slide 24: Constant Propagation
	Slide 25: Constant Propagation
	Slide 26: Constant Propagation
	Slide 27: Constant Propagation
	Slide 28: Constant Propagation
	Slide 29: Constant Propagation
	Slide 30: Constant Propagation
	Slide 31: Constant Propagation
	Slide 32: Constant Propagation
	Slide 33: Constant Propagation
	Slide 34: Constant Propagation
	Slide 35: Constant Propagation
	Slide 36: Constant Propagation
	Slide 37: Constant Propagation
	Slide 38: Constant Propagation
	Slide 39: Constant Propagation
	Slide 40: Constant Propagation
	Slide 41: Constant Propagation
	Slide 42: Constant Propagation
	Slide 43: Constant Propagation - Loops
	Slide 44: Ordering of information: Generalizing
	Slide 45: Ordering of information: Generalizing
	Slide 46: Ordering of information: Generalizing
	Slide 47: Constant Propagation
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Reaching Definitions - Example
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Generalization (Recap)
	Slide 66: Available Expressions
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Dataflow Analysis – Problem Categorization
	Slide 87: Exercises

