
CS323: Compilers
Spring 2023

Week 13: Dataflow Analysis (liveness (recap), 
Constant Propagation, Reaching Definitions, Available 

Expressions)
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Recap: Liveness

• Variables are live if there exists 
some path leading to its use

• Start from exit block and 
proceed backwards against the 
control flow to compute

A := 1
A = B

B := 1 C := 1

D := A+B

LiveIn(b) = LiveUse(b) ڂ (LiveOut(b) – Def(b))

//set that contains all variables 
used by block b 

//set that contains all 
variables defined by block b 

2

LiveOut(b) =ڂi ∈Succ(b) LiveIn(i)

entry

exit
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

Original CFG CFG with edges reversed (and 
initialized) for backwards analysis: is X 
live? (F=false, T=true)

F

F

F
F

F

F

F

F

Recap: Liveness
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

F

F
F

F

F

F

F

X must be live here
(refer week11 slide) 

Recap: Liveness
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

F
F

F

F

F

F

X must be live here
(refer week11 slide) 

Recap: Liveness
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

F

F

F

F

X must be live here
(refer week11 slide) 

Recap: Liveness
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X must be live here
(refer Week11 slide) 

Recap: Liveness

CS323, IIT Dharwad



8

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (refer Week11 slide). 
No change in information. 

Recap: Liveness
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READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F

X dead here (refer Week11 slide). 
No change in information.

Recap: Liveness

CS323, IIT Dharwad



10

READ(Z)

READ(N)

X = 2

X < N?

X = X + Z

PRINT(X)

T

T

T
T

T

F

F

F X dead here (refer Week11 slide). 
No change in information.

Recap: Liveness

Exercise: Repeat for Z and N CS323, IIT Dharwad



Constant Propagation

• Bigger problem size:
– Which lines using X could be replaced with a 

constant value?  (apply only constant 
propagation)

– How can we automate to find an answer to 
this question?

11

1. X := 2
2. Label1: 
3. Y := X + 1
4. if Z > 8 goto Label2
5. X := 3
6. X := X + 5
7. Y := X + 5
8. X := 2
9. if Z > 10 goto Label1
10.X := 3
11.Label2:
12.Y := X + 2
13.X := 0
14.goto Label3
15.X := 10
16.X := X + X
17.Label3:
18.Y := X + 1
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Constant Propagation

• Problem statement:

– Replace use of a variable X by a constant K

• Requirement:

– property: on every path to the use of X, the last 
assignment to X is: X=K

Same as: “is X=K at a program point?”
At any program point where the above property holds, we can apply 
constant propagation.
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Symbolic Evaluation

• Associate with X one of the following values:

• Idea of symbolic execution: at all program points, 
determine the value of X
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Value Meaning

⊥ (“bottom”) This statement never executes

K (“constant”) X = K

⊤ (“top”) X is not a constant



Constant Propagation
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1X=1 X=1

X=1

X=4
X=1

X=⊤

X=⊤

If X=K at some program point, we can apply constant propagation (replace the 
use of X with value of K at that program point) 



Constant Propagation

• Determining the value of X at program points:

– Just like in Liveness Computation in a CFG, the information 
required for constant propagation flows from one 
statement to adjacent statement

– For each statement s, compute the information just 
before and after s. C is the function that computes the 
information: 

C(X,s,flag)
//if flag=IN, before s what is the value of X

//if flag=OUT, after s what is the value of X

• Transfer function (pushes / transfers information from one 
statement to another)
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Constant Propagation

• Determining the value of X at program points (Rule 1):
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…

If X=⊤ at exit of any of the predecessors, X=⊤ at the entrance of S

… …

s

X=⊤

p1 p2 p3

X=⊤

if C(pi,s,OUT)=⊤

for any i, then C(X,s,IN)=⊤



Constant Propagation

• Determining the value of X at program points (Rule 2):
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…

If X=K1 at one predecessor and X=K2 at another predecessor and 
K1 ≠ K2, then  X=⊤ at the entrance of S

… …

s

X=1

p1 p2 p3

X=⊤

if C(pi,s,OUT)=K1 and C(pj,s,OUT)=K2 and K1 ≠ K2  then C(X,s,IN)=⊤

X=4



Constant Propagation

• Determining the value of X at program points (Rule 3):
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…

If X=K at some of the predecessors and X= ⊥ at all other 
predecessors, then  X=K at the entrance of S

… …

s

X=1

p1 p2 p3

X=1

if C(pi,s,OUT)=K or ⊥ for all i then C(X,s,IN)= K

X=⊥X=1



Constant Propagation

• Determining the value of X at program points (Rule 4):
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…

If X= ⊥ at all predecessors, then  X= ⊥ at the entrance of S

… …

s

X= ⊥

p1 p2 p3

X= ⊥

if C(pi,s,OUT)=⊥ for all i then C(X,s,IN)= ⊥

X=⊥X= ⊥



Constant Propagation

• Determining the value of X at program points (Rule 5):
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If X= ⊥ at entrance of s, then  X= ⊥ at the exit of S

s
X= ⊥

if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥

X= ⊥



Constant Propagation

• Determining the value of X at program points (Rule 6):
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No matter what the value of X is at entrance of s(X:=K), X=K at the 
exit of s

X=4

C(X,s(X:=K),OUT)=K

X=4

But previous slide said if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥. So, we give 

priority to this.



Constant Propagation

• Determining the value of X at program points (Rule 7):
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In s, assignment to X is any complicated expression (not a constant 
assignment).

X=f(..)

C(X,s(X:=f()),OUT)=⊤

X=⊤

But earlier slide said if C(X,s,IN)=⊥ then C(X,s,OUT)= ⊥. So, we give 

priority to this.



Constant Propagation

• Determining the value of X at program points (Rule 8):
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Value of X remains unchanged before and after s(Y:=..) when s doesn’t 
assign to X and X ≠ Y

Y=…

C(X,s(Y:=..),OUT)=C(X,s(Y:=..),IN)

E.g. X:=1

E.g. X:=1



Constant Propagation

• Putting it all together

1. For entry s in the program, initialize C(X,s,IN)=⊤ and 
initialize C(X,s,IN)=C(X,s,OUT)=⊥ everywhere else

2. Repeat until all program points (i.e. any s) satisfy rules 1-8 
1. Pick s in the CFG that doesn’t satisfy any one of rules 1-8 and 

update information.
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Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=⊥

X=⊥ X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=⊥ X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1 X=⊥X=⊥

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥
X=⊥

X=⊥

X=⊥

X=1 X=⊥



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥
X=⊥

X=⊥

X=⊥

X=1

X=1

X=⊥



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥

X=⊥

X=1

X=1

X=⊥

X=4



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥

X=⊥

X=1

X=1

X=1

X=4



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊥

X=⊥

X=1

X=1

X=1

X=4

X=1



Constant Propagation

• Putting it all together

CS323, IIT Dharwad 41

X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊤

X=⊥

X=1

X=1

X=1

X=4

X=1



Constant Propagation

• Putting it all together
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X := 1
B>0

Y := Z+W
X:=4

Y := 0

Y := 2*X

entry to basic block

exit from basic block

X=⊤

X=1

X=1

X=⊤

X=⊤

X=1

X=1

X=1

X=4

X=1



Constant Propagation - Loops
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X := 1
B>0

Y := Z+W Y := 0

Y := 2*X
A<B

entry to basic block

exit from basic block

X=⊤

X=⊥

X=⊥ X=⊥X=⊥

X=⊥

X=⊥X=⊥

X=⊥

X=⊥



Ordering of information: Generalizing

• We have been executing with symbols ⊥, ⊤ , and K. 
These are called abstract values

• Order these values as:

⊥ < K < ⊤

Can also be thought of as an ordering from least 
information to most information

Pictorially:

⊤

⊥
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..       -1        0        1        ..



Ordering of information: Generalizing

• Least Upper Bound (lub) : smallest element 
(abstract value) that is greater than or equal to 
values in the input

– E.g. lub ⊥, ⊥ =⊥, lub ⊤, ⊥ = ⊤,lub −1, 1 = ⊤, 
lub 1 ⊥ =?

– Rewriting rules 1-4: C(X,s,IN)=lub{C(pi,s,OUT) for all 
predecessors i)}

– Also called as join operator. Written as: A ⊔ B
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Ordering of information: Generalizing

• Recall that in determining information at all program 
points: 
“2. Repeat until all program points (i.e. any s) satisfy rules 1-8 

- Pick s in the CFG that doesn’t satisfy any one of rules 1-8 and 
update information. “

– How do we know that this terminates?
• lub ensures that the information changes from lower value to 

higher value

• In the constant propagation algorithm:

– ⊥ can change to constant and then to ⊤

– ⊥ can change to ⊤

– C(X, s, flag) can change at most twice
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Constant Propagation

• Exercise: what is the complexity of our constant 
propagation algorithm?

= NumS* 4 ( NumS = number of statements in the program). 

- Per program point, we evaluate the C function. 

- The C function changes value at most two times (initialized to ⊥ first and 
then could change to K and then to ⊤).

- There are two program points (entry/IN and exit/OUT) for every statement.
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This is the complexity of the analysis per variable

How do we do the analysis considering all variables that exist in the program?
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Constant Propagation (Multiple Variables)

V
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Constant Propagation (Multiple Variables)
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Worklist
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Reaching Definitions - Example

• Goal: to know where in a program each 
variable x may have been defined when 
control reaches block b

• Definition d reaches block b if there is a 
path from point immediately following d 
to b, such that the variable defined in d is 
not redefined / killed along that path

1: i=m-1
2: j=n
3: a=u1

Out(b) = gen(b) ڂ (In(b) – kill(b))

//set that contains all statements 
that may define some variable x in 
b. E.g. gen(1:a=3;2:a=4)={2} 

//set that contains all statements 
that define a variable x that is 
also defined in b. E.g. 
kill(1:a=3; 2:a=4)={1,2} 59

In(b) =ڂi ∈Pred(b)Out(i)

entry

4: i=i+1
5: j = j -1

7: i=u3

exit

6: i=u3
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Generalization (Recap)

• Direction of the analysis:
– How does information flow w.r.t. control flow?

• Join operator:
– What happens at merge points? E.g. what operator to use Union or 

Intersection?

• Transfer function:
– Define sets gen(b), kill(b), IN(b), OUT(b)

• Initializations?
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Available Expressions

• Goal: determine a set of expressions that have already been 
computed.
– E.g. to perform global CSE

• Direction of the analysis:
– How does information flow w.r.t. control flow?

• Join operator:
– What happens at merge points? E.g. what operator to use Union or 

Intersection?

• Transfer function:
– Define sets AvailIn(b), AvailOut(b), Compute(b), Kill(b)

• Initializations?
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What is this piece 
of code doing?
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Intermediate code (assuming int is 4 bytes): 
(Ignore the temporary counter value for now)

available expression
{}

{“4*i”}

S1 ={“4*i”, “a+t6”}

S2 =S1 U {“4*j”}

set S1

S3 =S2 U {“a+t8”}

set S3

set S3

set S3

t7 = t6

a[t6] = t9

t10 = t8

a[t8] = x

Can be rewritten:

copy propagation
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Intermediate code (assuming int is 4 bytes): 
(Ignore the temporary counter value for now)

available expression
{}

{“4*i”}

S1 ={“4*i”, “a+t6”}

S2 =S1 U {“4*j”}

set S1

S3 =S2 U {“a+t8”}

set S3

set S3

set S3

t7 = t6

a[t6] = t9

t10 = t8

a[t8] = x

apply dead-code elim.
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Intermediate code 
(after local CSE+copy prop.+dead-code elim.)  
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Intermediate code (assuming int is 4 bytes): 

(assume next temporary counter value=11)

t12=t11

t15=t13
a[t13]=x

a[t11]=x
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Intermediate code (assuming int is 4 bytes): 

after dead-code 
elim.

t12=t11

t15=t13
a[t13]=x

a[t11]=x
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t11=4*I
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

Intermediate code 
(after local CSE+copy prop.+dead-code elim.)  



• CFG for quicksort

CS406, IIT Dharwad 76



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

merge point

initializing for CSE



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

initializing for CSE
Set U={“m-1”, 
“4*n”, 
“a+t1”,
“4*i”, 

“i+1”,  
”a+t2”,
”j-1”, 
”4*j”,
”a+t4”,
”a+t6”,
”a+t8”,
”a+t7”,
”a+t11”,
”a+t13”
} 



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

compute(B1) 
aka. gen(B1) = 
{ “m-1”, “4*n”, 
“a+t1”}

kill(B1) = { 
“a+t1”}

Out(B1) = 
gen(B1) U IN(B1) – kill(B1)

Out(B1) = 
{ “m-1”, 
“4*n”, 
“a+t1”
} 



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B2) = { 
“4*i”, “a+t2”}

kill(B2) = { 
“4*i”, “a+t2”}

IN(B2) =  set U ∩
OUT(B1)
={“m-1”,”4*n”,
”a+t1”}



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B2) = { 
“4*i”, “a+t2”}

kill(B2) = { 
“4*i”, “a+t2”}

OUT(B2) =  
={{“4*i”, ”a+t2”} U 
{“m-1”, “4*n”, 
a+t1”} }

Out(B2) = 
gen(B2) U IN(B2) – kill(B2)



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B3) = { 
“4*j”, “a+t4”}

kill(B3) = { 
“4*j”, “a+t4”}

IN(B3) =  
={U ∩ OUT(B2)} = 
OUT(B2)



• CFG for quicksort
(after optimizing B5 and B6)
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B3) = { 
“4*j”, “a+t4”}

kill(B3) = { 
“4*j”, “a+t4”}

OUT(B3) =  
={“4*j”, “a+t4” U 
OUT(B2)}
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t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t11=4*i
x=a[t11]
t13=4*n
t14=a[t13]
a[t11]=x
a[t13]=x

{}

UU

U

U
U

U

U U

gen(B5) = { 
“4*i”, “a+t6”, 
“4*j”, “a+t8”}

kill(B5) = { 
“a+t8”, “a+t6”}

Initially, IN(B5) =  
=OUT(B4)=OUT(B3)

IN(B5)=“4*j”, “a+t4”, “4*i”, “a+t2”, “m-1”, “4*n”, “a+t1”

t6=4*i
x=a[t6]
t8=4*j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

t6=t2
x=a[t2]
t8=4*j
t9=a[t8]
a[t2]=t9
a[t8]=x
goto B2

x=a[t2]
t8=t4
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=a[t2]
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=t3
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

x=t3
a[t2]=t5
a[t4]=x
goto B2



Dataflow Analysis – Problem Categorization

• All path problem: 
– we want the property to hold at all the paths reaching a program 

point.

• Any path problem: 
– we want the property to hold at some path reaching a program point.

Orthogonal to the above categorization we can have:

• Forward flow problem:
– Transfer of information done along the direction of the control flow

• Backward flow problem:
– Transfer of information done opposite to the direction of the control 

flow
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Exercises

• Analysis of uninitialized variables

• Analysis of available expressions
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• What is the direction of analysis?
• What is the transfer function? 
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