CS323: Compilers

Spring 2023

Week 13: Dataflow Analysis (liveness (recap),
Constant Propagation, Reaching Definitions, Available
Expressions)

Recap: Liveness

* Variables are live if there exists
some path leading to its use

 Start from exit block and
proceed backwards against the
control flow to compute

LiveOut(b) = Ujesyceep) Liveln(i)
LiveIn(b) = LiveUse(b) U (LiveOut(b) - Def(b))

T T

//set that contains all variables //set that contains all
used by block b variables defined by block b

CS323, IIT Dharwad 2

Recap: Liveness

READ(Z)

READ(N)

X =2

X < N?

a_y

X=X+ Z

PRINT(X)

Original CFG

CS323, IIT Dharwad

F

P
F

X=X+ Z

PRINT(X)
F

CFG with edges reversed (and
initialized) for backwards analysis: is X
live? (F=false, T=true)

3

Recap: Liveness

\
F
Liveness in a CFG
READ(Z)
F
READ(N) | _
< X must be live here (i.e.
F = X before the statement)
X — 2 aee
F * Define a set LiveUse(b), where b is a basic
F block, as the set of all variables that are used
r‘ X < N? ‘within block b. LiveIn(b) 2 LiveUse(b)
P
X=X+2ZF
PRINT (X)
T X must be live here

(refer week11 slide)

CS323, IIT Dharwad 4

Recap: Liveness

N F
READ(Z)

F
READ(N)

F

X =2

F

F
PR
X=X+2Z [F
PRINT(X)
T

CS323, IIT Dharwad

Liveness in a CFG

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Def(b))

X must be live here
(refer week11 slide)

Recap: Liveness

N F
READ(Z)
F
READ(N)
F
X must be live here X = 2

(refer week11 slide)

CS323, IIT Dharwad

Liveness in a CFG

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Def(b))

Recap: Liveness

M F
READ(Z)
F
READ(N)
F
X =2
T
T
DIE
X=X+ Z T
X must be live here PRINT(X)
(refer Week11 slide) T

CS323, IIT Dharwad

Liveness in a CFG

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Def(b))

Recap: Liveness

CS323, IIT Dharwad

M F
READ(Z)
F
READ(N)
F
X =2
n
X < N?
DR
4
PRINT(X)
T

X dead here (refer Week11 slide).
No change in information.

Liveness in a CFG

-

= Given that e does not use
[:E X, X is definitely dead here
(i.e. before the statement).

block, as: the set of all variables live at the
entrance of a basic block

Recap: Liveness

CS323, IIT Dharwad

M F
READ(Z)
F
READ(N)
F
X =2
n
X < N?
DR
4
PRINT(X)
T

X dead here (refer Week11 slide).
No change in information.

Liveness in a CFG - Observation

|: X not live here / X is live here
o =Y
< If Xis not live here / X is live here

*|f a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

Recap: Liveness

. F X dead here (refer Week11 slide).
READ(Z) No change in information.
F
READ(N)
F
X=2 Liveness in a CFG - Observation
T
T
ﬁ X < N2 —
) T |:=T X not live here / X is live here
X =X + 7 T < If Xis not live here / X is live here
*|f a node neither uses nor defines X, the liveness
PRINT (X) property remains the same before and after
T executing the node

CS323, IIT Dharwad Exercise: Repeat for Zand N 10

Constant Propagation

Bigger problem size:

— Which lines using X could be replaced with a
constant value? (apply only constant
propagation)

— How can we automate to find an answer to
this question?

1. X := 2

2. Labell:

3. Y : =X+ 1

4. if Z > 8 goto Label2
5. X := 3

6. X := X + 5

7.Y =X+ 5

8. X := 2

9. if Z > 10 goto Labell
10.X := 3

11.Label2

12.Y := X + 2

13.X := 0

14.goto Label3

15.X := 10

16.X (= X + X
17.Label3:

18.

Y (=X +1

Constant Propagation

* Problem statement:

— Replace use of a variable X by a constant K

* Requirement:

— property: on every path to the use of X, the last
assignment to X is: X=K
Same as: “is X=K at a program point?”

At any program point where the above property holds, we can apply
constant propagation.

How can we find constants/’

® |deal: run program and see which variables are constant

® Problem: variables can be constant with some inputs, not
others — need an approach that works for all inputs!

® Problem: program can run forever (infinite loops?) —
need an approach that we know will finish

® |dea: run program symbolically

® Essentially, keep track of whether a variable is constant
or not constant (but nothing else)

CS323, IIT Dharwad

13

Overview of algorithm

® Build control flow graph

® We'll use statement-level CFG (with merge nodes) for
this

® Perform symbolic evaluation
® Keep track of whether variables are constant or not

® Replace constant-valued variable uses with their values, try
to simplify expressions and control flow

CS323, IIT Dharwad 14

Build CFG

X =1
X=l; y=X+2
y = X + 2,
if (y > x) then y = 5; @x?
e Y e

Symbolic evaluation

® |dea:replace each value with a
symbol

® constant (specify which), no

T
information, definitely not
constant /‘\\
® Can organize these possible 2101 2 .
values in a [attice \\\'//
L

® Set of possible values,
arranged from least
information to most
information

CS323, IIT Dharwad 16

Symbolic Evaluation

e Associate with X one of the following values:

1 (“bottom”) This statement never executes
K (“constant”) X =K

T (“top”) X is not a constant

* |dea of symbolic execution: at all program points,
determine the value of X

CS323, IIT Dharwad

21

Constant Propagation

entry to basic block

exit from basic block

If X=K at some program point, we can apply constant propagation (replace the
use of X with value of K at that program point)

CS323, IIT Dharwad 22

Constant Propagation

 Determining the value of X at program points:

— Just like in Liveness Computation in a CFG, the information
required for constant propagation flows from one
statement to adjacent statement

— For each statement s, compute the information just
before and after s. Cis the function that computes the
information:

C(X,s,flag)
//1f flag=IN, before s what is the value of X

//1if flag=0UT, after s what is the value of X

» Transfer function (pushes / transfers information from one
statement to another)

Constant Propagation

* Determining the value of X at program points (Rule 1):

If X=T at exit of any of the predecessors, X=T at the entrance of S

if C(p;,s,0UT)=T
foranyi, then C(X,s,IN)=T

Constant Propagation

* Determining the value of X at program points (Rule 2):

If X=K1 at one predecessor and X=K2 at another predecessor and
K1 # K2, then X=T at the entrance of S

if C(p;,s,0UT)=K1 and C(p;,s,0UT)=K2 and K1 #K2 then C(X,s,IN)=T

Constant Propagation

 Determining the value of X at program points (Rule 3):
pl p2 p3

X=1 X=1 l /x=1

X=1
S

If X=K at some of the predecessors and X= L at all other
predecessors, then X=K at the entrance of S

if C(p;,s,0UT)=K or Lforalli thenC(X,s,IN)= K

Constant Propagation

 Determining the value of X at program points (Rule 4):

If X= 1 at all predecessors, then X= 1 at the entrance of S

if C(p;,s,0UT)=L foralli thenC(X,s,IN)= 1L

Constant Propagation

* Determining the value of X at program points (Rule 5):

wn Im<———

|

X= 1
If X= 1 at entrance of s, then X= 1 at the exit of S

if C(X,s,IN)=LthenC(X,s,0UT)= 1

Constant Propagation

 Determining the value of X at program points (Rule 6):

|

X=4

|

X=4
No matter what the value of X is at entrance of s (X:=K), X=K at the
exit of s

C(X,s(X:=K),0UT)=K
But previous slide said if C(X,s,IN)=1thenC(X,s,0UT)= Ll.So, we give
priority to this.

Constant Propagation

 Determining the value of X at program points (Rule 7):

|

X=F(..)

|

X=T

In s, assignment to X is any complicated expression (not a constant

assignment). C(X, s(X:=F()),0UT)=T

But earlier slide said if C(X,s,IN)=1thenC(X,s,0UT)= L.So, we give
priority to this.

Constant Propagation

 Determining the value of X at program points (Rule 8):

l E.g. X:=1

Y=

lE.g. X:=1

Value of X remains unchanged before and after s(Y:=..) when s doesn’t
assigntoXand X #Y

C(X,s(Y:=..),0UT)=C(X,s(Y:=..),IN)

Constant Propagation

e Putting it all together
1. For entry s in the program, initialize C(X,s,IN)=T and
initialize C(X,s,IN)=C(X,s,0UT)=1 everywhere else
2. Repeat until all program points (i.e. any s) satisfy rules 1-8

1. Pick sin the CFG that doesn’t satisfy any one of rules 1-8 and
update information.

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

33

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

34

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

35

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

36

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

37

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

38

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

39

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

40

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=1]

exit from basic block

CS323, IIT Dharwad

41

Constant Propagation

e Putting it all together

entry to basic block

X=T1{

X=T|

exit from basic block

CS323, IIT Dharwad

42

Constant Propagation - Loops

entry to basic block

exit from basic block

CS323, IIT Dharwad

43

Ordering of information: Generalizing

* We have been executing with symbols 1, T, and K.
These are called abstract values

e Order these values as:
1 <K< T

Can also be thought of as an ordering from least
information to most information

Pictorially:

Ordering of information: Generalizing

e Least Upper Bound (lub) : smallest element
(abstract value) that is greater than or equal to
values in the input

— E.g. lub(L, 1) =1, lub(T, L) = T,lub(-1,1) =T,
lub(1 1) =?

— Rewriting rules 1-4: C(X,s,IN)=1ub{C(p;,s,0UT) for all
predecessors i)}

— Also called as join operator. Writtenas: A LI B

Ordering of information: Generalizing

e Recall that in determining information at all program
points:

“2. Repeat until all program points (i.e. any s) satisfy rules 1-8
- Pick s in the CFG that doesn't satisfy any one of rules 1-8 and
update information. “

— How do we know that this terminates?

* |ub ensures that the information changes from lower value to
higher value
* In the constant propagation algorithm:
— 1 can change to constantand thento T
— 1l canchangeto T
— C(X, s, flag) can change at most twice

Constant Propagation

Exercise: what is the complexity of our constant
propagation algorithm?

= NumS* 4 (NumS = number of statements in the program).

- Per program point, we evaluate the C function.

- The C function changes value at most two times (initialized to L first and
then could change to K and then to T).

- There are two program points (entry/IN and exit/OUT) for every statement.

This is the complexity of the analysis per variable

How do we do the analysis considering all variables that exist in the program?

Constant Propagation (Multiple Variables)

X

e Keep track of the symbolic value of T[T
a variable at every program point
(on every CFG edge)

Xx =1

® State vector V

® What should our initial value be?

® Starting state vector is all T

e (Can’t make any assumptions
about inputs — must assume |
NOt constant merge

iy
® Everything else starts as L, since :
we have no information about Y
1L

the variable at that point

end

Constant Propagation (Multiple Variables)

® For each statement t = e evaluate T[T
e using Vi, update value for t and - 1
propagate state vector to next ——
statement '
y=X+2
® What about switches? . I
. X ?
® |[feis true or false, propagate Vin @ ——
to appropriate branch
I y =5
e What if we can’t tell? / ——
® Propagate Vi to both merge
branches, and symbolically N
execute both sides .
® What do we do at merges? al

end

Handling merges

e Have two differentVj,s coming from two
different paths

® Goal: want new value for Vi, to be safe
(shouldn’t generate wrong information), and we
don’t know which path we actually took

® Consider a single variable. Several situations:

® V=1 V=% Vg, =F*

e V,

® V,=constant X,V = constanty = Vo, = T

® Vi=TVa=%2Vou=T //l\\
® Generalization:

o \\| a

CS323, IT Dharwad

constant X,V2 = x = Vout = X

50

Result: worklist algorithm

® Associate state vector with each edge of CFG, initialize all
values to L, worklist has just start edge

® While worklist not empty, do:

Process the next edge from worklist
Symbolically evaluate target node of edge using input state vector

If target node 1s assignment (x = e), propagate Vin[eval(e)/x] to
output edge

If target node 1s branch (e?)

If eval(e) 1s true or false, propagate Vin to appropriate output
edge

Else, propagate Vin along both output edges
If target node 1s merge, propagate join(all Vin) to output edge
If any output edge state vector has changed, add i1t to worklist

CS323, IT Dharwad

51

Running example

(start)
X

y

=

=

-1

Worklist

CS323, IT Dharwad

Running example

X y
TIT
X =1
T
y=X+12
, 113
1L y =5
merge
115
.Y ...
115
end

53

What do we do about loops?

® Unless a loop never executes, symbolic execution looks like
it will keep going around to the same nodes over and over

again

® |[nsight: if the input state vector(s) for a node don’t change,
then its output doesn’t change

® |[f input stops changing, then we are done!

® Claim:input will eventually stop changing. Why?

CS323, IT Dharwad

54

Loop example

First time through loop, x = |
Subsequent times,x = T

X =X + 1

Complexity of algorithm

® V =# of variables, E = # of edges

® Height of lattice = 2 — each state vector can be updated at
most 2 *V times.

® So each edge is processed at most 2 *V times, so we
process at most 2 * E *V elements in the worklist.

® (Cost to process a node: O(V)

® Overall, algorithm takes O(EV2) time

CS323, IT Dharwad 56

Question

® (Can we generalize this algorithm and use it for more
analyses?

CS323, IT Dharwad

57

Constant propagation

® Step |: choose lattice (which values are you going to track
during symbolic execution)?

® Use constant lattice

® Step 2: choose direction of dataflow (if executing symbolically,
can run program backwards!)

® Run forward through program
® Step 3: create transfer functions

® How does executing a statement change the symbolic state?
® Step 4: choose confluence operator

® What do do at merges? For constant propagation, use join

CS323, IT Dharwad

58

Reaching Definitions - Example

* Goal: to know where in a program each
variable x may have been defined when
control reaches block b

* Definition d reaches block b if there is a
path from point immediately following d
to b, such that the variable defined in d is
not redefined / killed along that path

In(b) =U; ePred(b) Out(i)

Out(b) = ge?(b) U (In(b) - ki?ll(b))

//set that contains all statements //set that contains all statements
that may define some variable x in that define a variable x that is
b. E.g. gen(1l:a=3;2:a=4)={2} also defined in b. E.g.
kill(1l:a=3; 2:a=4)={1,2} 59

CS323, IIT Dharwad

Reaching definitions

® What definitions of a variable reach a particular program point

® A definition of variable x from statement s reaches a statement
t if there is a path from s to t where x is not redefined

® Especially important if x is used in t

® Used to build def-use chains and use-def chains, which are key
building blocks of other analyses

® Used to determine dependences:if x is defined in s and that
definition reaches t then there is a flow dependence from s

ot

® We used this to determine if statements were loop invaraint

e All definitions that reach an expression must originate from
outside the loop, or themselves be invariant

CS323, IT Dharwad

60

Creating a reaching-def analysis

® Can we use a powerset lattice?

® At each program point, we want to know which definitions
have reached a particular point

® (Can use powerset of set of definitions in the program
® Vs set of variables, S is set of program statements
® Definition:de V x §
® Use a tuple, <v, s>
® How big is this set!?

® At most |V x S| definitions

CS323, IT Dharwad

61

Forward or backward!?

® What do you think?

Choose confluence operator

® Remember: we want to know if a definition may reach a
program point

® What happens if we are at a merge point and a definition
reaches from one branch but not the other?

® We don’t know which branch is taken!

® We should union the two sets — any of those definitions

can reach

® We want to avoid getting too many reaching definitions —
should start sets at L

CS323, IT Dharwad

63

Transfer functions for RD

® Forward analysis, so need a slightly different formulation
® Merged data flowing into a statement
IN() = Usepreare) OUT()
OUT(s) = gen(s)U (IN(s)—kill(s))
® What are gen and kill?
® gen(s): the set of definitions that may occur at s
® eg,gen(siix =e)is <x,s/>

® kill(s): all previous definitions of variables that are definitely
redefined by s

® eg, kill(si:x =e)is <x,*>

CS323, IT Dharwad 64

Generalization (Recap)

Direction of the analysis:

— How does information flow w.r.t. control flow?

Join operator:

— What happens at merge points? E.g. what operator to use Union or
Intersection?

Transfer function:
— Define sets gen(b), kill(b), IN(b), OUT(b)
Initializations?

Available Expressions

Goal: determine a set of expressions that have already been
computed.
— E.g. to perform global CSE

Direction of the analysis:

— How does information flow w.r.t. control flow?

Join operator:

— What happens at merge points? E.g. what operator to use Union or
Intersection?

Transfer function:
— Define sets Availln(b), AvailOut(b), Compute(b), Kill(b)

Initializations?

Transfer functions for meet

® What do the transfer functions look like if we are doing a meet?

IN(S) = Nicpredas) OUT(1)
OUT(S) = gen(s)U (IN(S)— kill(s)

® gen(s): expressions that must be computed in this statement
e kill(s): expressions that use variables that may be defined in this statement

® Note difference between these sets and the sets for reaching definitions or
liveness

® Insight: gen and kill must never lead to incorrect results

® Must not decide an expression is available when it isn’t, but OK to be safe
and say it isn’t

® Must not decide a definition doesn’t reach, but OK to overestimate and say
it does

CS406, IIT Dharwad 67

Analysis initialization

® How do we initialize the sets?

If we start with everything initialized to L, we compute the smallest
sets

If we start with everything initialized to T, we compute the largest

e Which do we want!? It depends!

CS406, IIT Dharwad

Reaching definitions: a definition that may reach this point
® We want to have as few reaching definitions as possible = L

Available expressions: an expression that was definitely computed
earlier

® We want to have as many available expressions as possible = T

Rule of thumb: if confluence operator is u, start with L, otherwise
start with T

68

void

(int m, int n)

int 1, Jj;
int v, X;
if (n <= m) return;
/* fragment begins here */
i=m1; j =n; v=aln];
while (1) {
do i = i+1l; while (al[i] < v);
do j = j-1; while (al[jl]l > v);
if (i >= j) break;
x = alil; alil = al[jl; aljl =
}

What is this piece
of code doing?

x; /* swap alil, al[j] */

x = a[il; alil = al[n]; aln] = x; /* swap al[il, aln] */

/* fragment ends here */

(m,j); (i+1,n);

CS406, IIT Dharwad
IR. Sedgewick, “Implementing Quicksort Programs,” Comm. ACM, 21, 1978, pp. 847-857.

69

Intermediate code (assuming int is 4 bytes):

(Ignore the temporary counter value for now)

void quicksort{int m, int n) available expression

U

LU lte = axi
{ {"4*i"} X = a[t6] Can be rewritten:
))) S, ={"4*i", “a+t6"} .
int 1, J; set S, t7 = 4%1 t7=16
int v, X; S, =S, U {“4*}") t8 = 4%j
if (n <= m) return; o |t9 = a[t8]
. 535, U {"a+t8"} alt7] = t9 a[t6]=19
/* fragment begins here * sets, [(t7] =1
i=m1; j=n; v= a[nl]; set S t1l0 = 4*j t10-t8
. 3la[tl0] = x a[t8]=x
while (1) { set S,
do i = i+1; while (al[il] < v); \
do j = j-1; while (al[j]l > v); copy propagation
if (i >= j) break;
x = alil; alil = aljl; alj] = x;|/* swap alil, aljl */
}
x = a[il; alil = al[n]; aln] = x; /* swap al[il, aln] */
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);
}

CS406, IIT Dharwad

70

Intermediate code (assuming int is 4 bytes):

(Ignore the temporary counter value for now)

void quicksort{int m, int n) available expression

U

4%} t6 = 4*1 .,y dead-code elim
{ s, =(a*1", “artey| X aLTO]
int i, j; ! ’ sets, t7 = 4%i i7=16
int v, X; S, =S, U {“4*}") t8 = 4%j
if (n <= m) return; e o t9 = a[t8]
. 535, U {"a+t8"} alt7] = t9 a[t6]=19
/* fragment begins here * set S, [t7] :
= * =
i=m1; j =n; v=alnl; set S, tlglg 4_3 t-]r@-_tg
while (1) { sets, | 2[EL0] = x ald]=x
do i = i+1; while (al[il] < v);
do j = j-1; while (al[jl]l > v);
if (i >= j) break;
x = alil; alil = alj]; alj]l = x;|/* swap alil, alj]l */
}
x = al[il; ali] = a[n]; a[n] = x; /* swap al[il, aln] =/
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);
}

CS406, IIT Dharwad

71

Intermediate code
(after local CSE+copy prop.+dead-code elim.)

void quicksort(int m, int n)

t6 = 4*1 t6 = 4*%ji
{ X = a[t6] | x = a[t6]
int i, J; t7 = 4*%1 | t8 = 4%
int v, X; t8 = 4%3 | t9 = a[t8]
if (n <= m) return; t9 = a[t8] a[t6] = t9
a[t7] = t9 a[t8] = x

/* fragment begins here */
i=m1; j =n; v=aln];

while (1) {

do i = i+1; while (al[il] < v);
do j = j-1; while (al[jl]l > v);
if (i >= j) break;

x = alil; alil = aljl; aljl = x;|/* swap alil], alj] */

t10 = 4%
aftl0] = x

}

x = al[il; ali] = a[n]; a[n] = x; /* swap al[il, aln] =/
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);

CS406, IIT Dharwad 72

Intermediate code (assuming int is 4 bytes):

void quicksort(int m, int n) (assume next temporary counter value=11)
tll = 4+*]
{ X = a[tll]
int i, §; t12 = 4+%1i t12=t11
int v, Xx; t13 = 4%*n

t1l4d = a[tl3]

a[tl2] = t14 a[tll]=x
t1l5 = 4*n t15=t13
aftls5] = x a[t13]=x

if (n <= m) return;
/* fragment begins here */
i=m1; j =n; v=aln];
while (1) {

do i = i+1; while (al[il] < v);

do j = j-1; while (al[jl]l > v);

if (i >= j) break;

x = alil; alil = aljl; aljl = x; /* swap alil], alj] */

}

x = alil; alil = a[n]; aln] = x;|/* swap a[il, aln] */
/* fragment ends here */

quicksort(m,j); quicksort(i+i,n);

CS406, IIT Dharwad 73

Intermediate code (assuming int is 4 bytes):

void quicksort(int m, int n)
tll = 4+*31 after dead-code

{ x = a[tll] elim.
int i, i; t12 = 4%i 2=t
int v, X; tl3 = 4%*n

t1l4d = a[tl3]

a[tl2] = t14 a[tll]=x
t1l5 = 4*n $15=t13
a[tl5] = x a[tl3]=x

if (n <= m) return;
/* fragment begins here */
i=m1; j =n; v=aln];
while (1) {

do i = i+1; while (al[il] < v);

do j = j-1; while (al[jl]l > v);

if (i >= j) break;

x = alil; alil = aljl; aljl = x; /* swap alil], alj] */

}

x = alil; alil = a[n]; aln] = x;|/* swap a[il, aln] */
/* fragment ends here */

quicksort(m,j); quicksort(i+i,n);

CS406, IIT Dharwad 74

Intermediate code
(after local CSE+copy prop.+dead-code elim.)

void quicksort(int m, int n)

tll = 4%*]
{ x = a[tll]
int i, J; tl2 = 4*3i t1_1?:1*1|]
int v, x; t13 = 4%n x=2

- t13=4%*n
if (n <= m) return; t1l4 = a[tl3]

_ t14=a[t13]
/* fragment begins here %/ ii;li]4;nt14 a[t11]=x
i =m-1; j = n; v = alnl; a[t15] = x a[t13]=x

while (1) {
do i = i+1l; while (al[i] < v);
do j = j-1; while (al[jl]l > v);
if (i >= j) break;
x = alil; alil = aljl; aljl = x; /* swap alil], alj] */
}
x = alil; alil = a[n]; aln] = x;|/* swap a[il, aln] */
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);

CS406, IIT Dharwad 75

void quicksort(int m, int n)

{

/* recursively sorts alm] through al[n]

int i, Jj;

int v, X;

if (n <= m) return;

/* fragment begins here */

i=m-1; j =n; v = aln];
while (1) {
do i = i+1; while (a[il < v);
do j = j-1; while (a[j] > v);
if (i >= j) break;
x = ali); alil = aljl; aljl] = x; /
}
x = al[il; al[i] = aln]; aln] = x; /* sw

/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);

* CFG for quicksort

CS406, IIT Dharwad

i=m1

i =n

tl = 4*n
v = a[tl]

i= i+l
t2 = 4+*]
t3 = a[t2]

Y
j=3j-1
td = 4%
£5 = a[t4]

if t5>v goto 33

|

t6 = 4*1

x = a[te]
t7 = 4+*i
t8 = 4+7
t9 = a[t8]
a[t7] = t9
t10 = 4%7
a[tlo] = x
goto B2

|

B

5

if i»=j goto Bﬂ B,

o~

tll = 4+*3i

x = a[tll]
tl2 = 4+*1
t1l3 = 4*n
tld = a[tl3]
aftl2z] = tl4
t1l5 = 4#*n
a[tls] = x

void quicksort(int m, int n)

/* recursively sorts a[m] through al[n] ; : z_l %
{ tl = 4*n
int i, j; Ml
int v, X;
if (n <= m) return; Y
/* fragment begins here */ /fffr_hfh: i+l B,
i=m1, j=mn; v= a[n]; v2 : :1::2]
while (1) { J.f t3<v goto B,
do i = i+1; while (a[il < v); H
do j = j-1; while (al[j] > v); '
if (i >= j) break; j = j-1 1 B
x = al[il; alil = aljl; aljl = x; / td = 4%] .
} t5 = a[t4]

if t5>v goto 33

|

x = al[il; al[il = al[n]; aln] = x; /* sw
/* fragment ends here */
quicksort(m,j); quicksort(i+l,n);

})i}=j g?::_to B: B,
t16=4%] -
. t11=4*

* CFG for quicksort x=alte] | cealtl1]

(after optimizing B5 and B6) t8=4"] t13=4*n
t9=alts] t14=a[t13]
alt6]=t3 a[t11]=x

CS406, IIT Dharwad a[t8]=x a[t13]=x
goto B2

initializing for CSEl 0
void quicksort(int m, int n)

m—1 B

/* recursively sorts a[m] through al[n] ; : 0 :
{ tl = 4*n merge point
int i, j; v = a[tl]
int v, X; U
if (n <= m) return; U \ 1 /
/* fragment begins here */ i= i+l
i=m1, j=mn; v= a[n]; : :1::2]
while (1) { bf t3<v Elc:toB
do i = i+1; while (a[il < v);
do j = j-1; while (a[j] > v); / /‘é
if (i >= j) break; j = 3-1
x = al[il; alil = aljl; aljl = x; / td = 4%j
} t5 = a[t4]
x = a[i:]; a[i] - a[n]; a[n] = x; f# Sw. if t5>vw g0t033
/* fragment ends here */ lU
quicksort(m,j); quicksort(i+l,n); S
} if i>=j goto B B,
L
] t6=4%i Y ET B
* CFG for quicksort x=alte] | f(i[fll'] ﬁ
(after optimizing B5 and B6) t8=4"] t13=4*n
t9=alts] t14=a[t13]
alt6]=t3 a[t11]=x
CS406, IIT Dharwad a[t8]=x a[t13]=x
goto B2

void quicksort(int m, int n)

{

initializing for CSE | §

Set U={"m-1",

/* recursively sorts alm] through al[n] ? i} z—l B, “4*p”
£1 = 4*n “attl”,
int i, j; v = af[tl] Il4*i”'
int v, X; U ”i+1”,
if (n <= m) ret?rn; Y "a+t2”,
/* fragment begins here */ i= 1+1 By g7
i=n-1; j =n; v =alnl; b are2) "gry
while (1) { ;Lf t3<v thDBZ ” J4T”
do i = i+1; while (a[il] < v); “U ”a+t)
do j = j-1; while (a[j] > v); ! a+t6”,
if (i >= j) break; U 5 = 3-1 1 & "a+t8”,
x = al[il; alil = aljl; aljl = x; / td = 4% L a7
+ "I:S = a[t4] ”a+t11”,
x = a[i:]; a[i] - a[n]; a[n] = x; f# su if t5>v goto 33 ”a+t13”
/* fragment ends here */ yj)
quicksort(m,j); quicksort(i+l,n); —
if i>=j goto B B,
N
t6=4%i :
. t11=4%i B
* CFG for quicksort x=a[t6] Bs cealtl1] °
(after optimizing B5 and B6) t8=4"] t13=4*n
t9=a[t8] t14=at13]
alt6]=t3 a[t11]=x
CS406, IIT Dharwad a[t8]=x a[t13]=x
goto B2

void quicksort(int m, int n)

{

/* recursively sorts alm] through al[n]

int 1, j;
int v, X;
if (n <= m) return;
/* fragment begins here */
i=m1; j =n; v=alnl;
while (1) {
do i = i+1; while (a[il < v);
do j = j-1; while (a[j] > v);
if (i >= j) break;
x = al[il; alil = aljl; aljl = x; /
}
x = alil; al[il = aln]; a[n] = x; /* sw
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);

* CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad

L { compute(B1)
L=m1 B, | aka. gen(B1) =
i1-=n4*n { ”m'].”, 114*nn‘
v = a[tl] ”a+t1”}
U \ U
Y
U i= i+l g. kill(B1) ={
£2 = 4%i “a+t1”}
t3 = a[t2]
Pf £3 to B
il """H_ZG °2] Qut(B1) =
“ gen(B1) U IN(B1) - kill(B1)
7 3 = j-1 | s
4 = 4% .7 out(B1) =
t5 = a[t4] “« ”
if t5>v gotoB, 34:]'”1 ’
U N
l lla+tlll
if i>=j goto B B, }
U
— /N ¥
t6=4%i 5, T11=4%] B,
x=alto] x=a[t11]
t8=4%) t13=4*n
t9=a[t8] t14=a[t13]
alt6]=t3 a[t11]=x
a[t8]=x a[t13]=x
goto B2

void quicksort(int m, int n)

{

/* recursively sorts alm] through al[n]

int i, Jj;

int v, X;

if (n <= m) return;

/* fragment begins here */

i=m1; j =n; v=alnl;
while (1) {
do i = i+1; while (a[il] < v);

do j = j-1; while (a[j] > v);

if (i >= j) break;

x = al[il; ali]l = alj];
}
x = al[il; alil] =
/* fragment ends here */
quicksort(m,j); quicksort(i+i,n);

gen(B2) ={

aljl = x; /

aln]; aln] = x; /* sw

* CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad

jl- - m__l Bl Il4*ill' lla+t211}
j =n
tl = 4*n
v = af[tl]
l+1 5| Kill(B2) = {
4*1- Il4*i”’ Ila+t2”}
= a[t2]
lf t3<v goto B,
T
U
' IN(B2) = set U N
j = j-1 | ouUT(B1)
td = ﬂ*j ! ={”m'1”,”4*n”,
t5 = a[t4] .
if t5>v goto ,B3 a+tl }
YJ
if i==j g;_'to B: B,
U
B, t11=4%i B
x=a[t11]
t13=4*n
t14=a[t13]
a[tll]=x
a[t13]=x

void quicksort(int m, int n)

{

/* recursively sorts alm] through al[n]

int i, Jj;
int v, X;
if (n <= m) return;
/* fragment begins here */
i=m1; j =n; v=alnl;
while (1) {
do i = i+1; while (a[i] < v);
do j = j-1; while (a[j] > v);
if (i >= j) break;
x = al[il; ali]l = alj];
}

x = al[il; ali]l = aln]; aln] = x; /* sw

/* fragment ends here */
quicksort(m,j); quicksort(i+l,n);

aljl = x; /

* CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad

| {} gen(B2) = {
jl_ — m__l B]_ Il4*i”' lla+t2”}
J=n
tl = 4*n
v = a[tl] kill(B2) = {
l ((4*in’ ua_l_tzu}
K_ﬂ'= i+l B,
= 4*3
= a[t2]
lf t3<v goto B,
U Out(B2) =
U ! genQBZ) U IN(B2) - kill(B2
j = j-1
£4 = 4%3 | OUT(B2) =
-tl;5 = a[t.-;] _{{1/4* n’ "a+t2"} U
if t5>v goto 33 {”m-l” up ¥
U ’ ’
l a+tl”}}
if i==j g;_'to B: B,
L
—/ %
to=A4" 5, t11=4%] B,
x=alto] x=a[t11]
t8=4% t13=4%n
t9=a[ts] t14=a[t13]
alt6]=t3 a[t11]=x
a[t8]=x a[t13]=x
goto B2

void quicksort(int m, int n)

{

/* recursively sorts alm] through al[n]

int i, Jj;

int v, X;

if (n <= m) return;

/* fragment begins here */

i=m1; j =n; v=alnl;

while (1) {
do i = i+1; while (a[i] < v);
do j = j-1; while (a[j] > v);
if (i >= j) break;

x = al[il; alil = aljl; aljl = x; /

}

x = al[il; al[il = al[n]; aln] = x; /* sw

/* fragment ends here */
quicksort(m,j); quicksort(i+l,n);

| {} gen(B3) = {
;|I_ = m-1 Bl ”4*J", Ila+t4”}
7 =n
tl = 4*n
v = artl) kill(B3) = {
U ”4*J”; 1(a+t4"}
Y
Kﬂ,\= i+l B,
= 4*i
= a[t2]
lf t3<v goto B,
|
u
. IN(B3) =
U T
7;“]. -1 1]={u n ouT(B2)} =
td = 4%j ' |OUT(B2)
t5 = a[t4]
if t5>v goto 33

—F

if i>=] goto B

B,

,ji”ff

* CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad

t6=4%i

B

x=a[t6] 5

t8=4%j
t9=a[t8]
=t9
=X
goto B2

a[t6]
a[t8]

U

t11=4%j B
x=a[t11]
t13=4*n
t14=a[t13]
a[tll]=x
a[t13]=x

void quicksort(int m, int n)

{

/* recursively sorts alm] through al[n]

int i, Jj;

int v, X;

if (n <= m) return;

/* fragment begins here */

i=m1; j =n; v=alnl;

while (1) {
do i = i+1; while (a[i] < v);
do j = j-1; while (a[j] > v);
if (i >= j) break;

x = al[il; alil = aljl; aljl = x; /

}

x = al[il; al[il = al[n]; aln] = x; /* sw

/* fragment ends here */
quicksort(m,j); quicksort(i+l,n);

| {} gen(B3) = {
JI' - m__l B]_ Il4*JH’ ”a+t4”}
J=n
tl = 4*n
v = a[tl] kill(B3) = {
U ”4*J”, ((a+t4”}
Y
//ff#—th‘= i+l B,
= 4*i
= a[t2]
lf t3<v goto B,
|
u
| OUT(B3) =
U= '
5 = §-1 "I: _{(14* ” (la+t4” U
td = 4% '|ouT(B2)}
t5 = a[t4]
if t5>v goto 33

—F

if i>=] goto B

B,

,ji”ff

* CFG for quicksort
(after optimizing B5 and B6)

CS406, IIT Dharwad

t6=4%i

B

x=a[t6] 5

t8=4%j
t9=a[t8]
=t9
=X
goto B2

a[t6]
a[t8]

U

t11=4%j B
x=a[t11]
t13=4*n
t14=a[t13]
a[tll]=x
a[t13]=x

IN(B5)="4*]", “a+td”, “4*i” “a+t2”, “m-1”, “4*n” “a+t1”

t6=4%*i
Xx=a[t6]
t8=4%j
t9=a[t8]
a[t6]=t9
a[t8]=x
goto B2

x=a[t2]
t9=a(t4]
a[t2]=t9
a[td]=x
goto B2

!

x=t3
t9=a[t4]
a[t2]=t9
a[t4]=x
goto B2

CS406, IIT Dharwad

t6=t2
x=a[t2]
t8=4%j
t9=a[t8]
a[t2]=t9
a[t8]=x
goto B2

gen(B5) ={

B] u4*°n ua+t6H’
”4*J”, ”a+t8”}

|

Nl

x=a[t2]
t8=t4
t9=a[t4]
a[t2]=t9
a[td]=x
goto B2

V“\‘ !
‘l = l+l.

kill(B5) = {

t2 = 4*]
(t3 = a[t2]

”a+t8”, ua+t6”}

B,

'j_f t3<v gt::d:i:}f:'2

U

Initially, IN(B5) =

U= Y
/J=]‘1

=OUT(B4)=0UT(B3)

= 4*3
= a[t4]
K J_f t5>v goto H3
"

¥

x=t3
a[t2]=t5
a[td]=x
goto B2

if i>=j gotoB, B,
U_— U
—
—/] ¥

t6=4%j B. t11=4%*| Bg
x=a[t*§] x=a[t11]

t8=4%] t13=4%*n

t9=a[t8] t14=a[t13]
a[t6]=t9 a[t11]=x

a[t8]=x a[t13]=x

goto B2

Dataflow Analysis — Problem Categorization

* All path problem:

— we want the property to hold at all the paths reaching a program
point.

* Any path problem:

— we want the property to hold at some path reaching a program point.

Orthogonal to the above categorization we can have:
* Forward flow problem:
— Transfer of information done along the direction of the control flow

* Backward flow problem:

— Transfer of information done opposite to the direction of the control
flow

Exercises

* Analysis of uninitialized variables

* Analysis of available expressions

* What is the direction of analysis?
e What s the transfer function?

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Recap: Liveness
	Slide 3: Recap: Liveness
	Slide 4: Recap: Liveness
	Slide 5: Recap: Liveness
	Slide 6: Recap: Liveness
	Slide 7: Recap: Liveness
	Slide 8: Recap: Liveness
	Slide 9: Recap: Liveness
	Slide 10: Recap: Liveness
	Slide 11: Constant Propagation
	Slide 12: Constant Propagation
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 21: Symbolic Evaluation
	Slide 22: Constant Propagation
	Slide 23: Constant Propagation
	Slide 24: Constant Propagation
	Slide 25: Constant Propagation
	Slide 26: Constant Propagation
	Slide 27: Constant Propagation
	Slide 28: Constant Propagation
	Slide 29: Constant Propagation
	Slide 30: Constant Propagation
	Slide 31: Constant Propagation
	Slide 32: Constant Propagation
	Slide 33: Constant Propagation
	Slide 34: Constant Propagation
	Slide 35: Constant Propagation
	Slide 36: Constant Propagation
	Slide 37: Constant Propagation
	Slide 38: Constant Propagation
	Slide 39: Constant Propagation
	Slide 40: Constant Propagation
	Slide 41: Constant Propagation
	Slide 42: Constant Propagation
	Slide 43: Constant Propagation - Loops
	Slide 44: Ordering of information: Generalizing
	Slide 45: Ordering of information: Generalizing
	Slide 46: Ordering of information: Generalizing
	Slide 47: Constant Propagation
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Reaching Definitions - Example
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Generalization (Recap)
	Slide 66: Available Expressions
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Dataflow Analysis – Problem Categorization
	Slide 87: Exercises

