CS323: Compilers

Spring 2023

Week 12: Dataflow Analysis

Useful optimizations

® Common subexpression elimination (global)
® Need to know which expressions are available at a point
® Dead code elimination

® Need to know if the effects of a piece of code are never
needed, or if code cannot be reached

e Constant folding
® Need to know if variable has a constant value

® So how do we get this information?

CS323, IIT Dharwad

Dataflow analysis

® Framework for doing compiler analyses to drive optimization

® Works across basic blocks

® Examples

CS323, IIT Dharwad

Constant propagation: determine which variables are
constant

Liveness analysis: determine which variables are live

Available expressions: determine which expressions
have valid computed values

Reaching definitions: determine which definitions could
“reach” a use

Dataflow Analysis - Common Traits

Common requirement among global optimizations:

 Know a particular property X at a program point

(There is a program point one before a statement and one
after a statement)

e Say that property X definitely holds.
OR

* Don’t know if property X holds or not (okay to be
conservative)

This requires the knowledge of entire program

Dataflow analysis

® Framework for doing compiler analyses to drive optimization

® Works across basic blocks

® Examples

Constant propagation: determine which variables are
constant

Liveness analysis: determine which variables are live

CS323, IIT Dharwad

Available expressions: determine which expressions
have valid computed values

Reaching definitions: determine which definitions could
“reach” a use

Liveness — Recap..

Xdef{:ed here X is live at 1
1: %X = 10 ..used in future
N: Y=X+5
X used here

* A variable X is live at statement S if:
* Thereis a statement S’ that uses X
e ThereisapathfromSto¥S
* There are no intervening definitions of X

Liveness — Recap..

10 Xisdead at 1l
Y + 2

1: X
2: X

N: Y=X+5

e A variable X is dead at statement S if it is not live at S
e Whatabout ..X =X + 1°?

CS323, IIT Dharwad 7

Liveness in a CFG

&

\ Given that e does not use
X = €] X,Xis definitely dead here
(i.e. before the statement).

* Define aset LiveIn(b), where b is a basic
block, as: the set of all variables live at the
entrance of a basic block

Liveness in a CFG

X = ... | Xisdefined here

* Define a set Def(b), where b is a basic block,
as: the set of all variables that are defined in b

Liveness in a CFG

X

e

If X is live here (i.e. after the
statement), X is used in some

Ncessor

* Define aset LiveOut(b), where b is a basic
block, as: the set of all variables live at the exit of
a basic block

Liveness in a CFG

X =

e

If X is live here (i.e. after the
statement), X is used in some

Ncessor

 If S(b) is the set of all successors of b, then

LlV@OUt(b) = Ui eS(b) leeln(l)

Liveness in a CFG

<

. =X

X must be live here (i.e.
before the statement)

* Define a set LiveUse(b), where b is a basic block, as
the set of all variables that are used before they are
defined within block b. LiveIn(b) 2 LiveUse(b)

Liveness in @ CFG - Observation

|/f a node neither uses nor defines X, the liveness
property remains the same before and after
executing the node

.. =Y
< If Xis not live here / X is live here

X not live here / X is live here

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

eUnder what scenarios can a variable be live at
the entrance of a basic block?

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

Liveness in a CFG

e |f a variable is live on exit from b, itis either
defined in b or live on entrance to b

LiveIn(b)2 LiveOut(b) - Def(b)

eUnder what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

Liveness in a CFG

Under what scenarios can a variable be live at

the entrance of a basic block?
*Either the variable is used in the basic block

*OR the variable is live at exit and not defined within
the block

LiveIn(b) = LiveUse(b) U (LiveOut(b) -
Def (b))

Liveness in a CFG - Example

e Draw CFG for the code:

CS323, IIT Dharwad

if A=B then A =B
B:=1
else y !
C:=1 =
endif
D:=A+B

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

1
b3

4
1
19

bl b2
o B :=1
b3
b4

CS323, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

b
A :=
A =B
b4

Block | Def LiveUse

b1 Ay {B) b2
b2 B :=1
b3
b4

1
1
b3

4
1
20

CS323, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

b1 (Al (B} b2
b2 CYRRY 2 e 1
b3
bl

1
b3

4
1
21

CS323, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

b1 (A} {8} b2
b2 B 0 2 .o g
b3 (Y

bl

1
b3

4
1
22

CS323, IIT Dharwad

Liveness in a CFG - Example

* Compute Def(b) and LiveUse(b) sets l

bl

A :=
A =B
b4

Block | Def LiveUse

1
b3

4
1
23

b1 (A} {8} b2
b2 B 0 2 .o g
b3 (Y

bl {D} {A,B}

CS323, IIT Dharwad

Liveness in a CFG - Example

e start from use of a variable to its definition.
Is this analysis going backward or forward w.r.t. control flow?

Block | Def LiveUse

b1 A} {B}
b2 By U
b3 (S Y

bl {D} {A,B}

CS323, IIT Dharwad 24

Liveness in a CFG - Example

e start from use of a variable to its definition.

b3 (S Y

CS323, IIT Dharwad

Backward-flow problem
A .=
A =
Block | Def
b1 (A} (B} 102
b2 B { 5 =
b4

1

B
b3 |
25

Liveness in a CFG - Example

e Start from use of a variable to its definition.
 Compute LiveOut and Liveln sets:

LiveIn(b) = LiveUse(b) U (LiveOut(b) - Def(b))

Block | Def |,
bl {A} {B} ‘
b2 B} {}
b3 ¢ {
b4 {D} {A,B}

CS323, IIT Dharwad LiveOut(b4)={}

Liveness in a CFG - Example

LiveIn(b4) = LiveUse(b4) U (LiveOut(b4) - Def(b4))
| - {A,B} U ({} - {®}) oo

S <
~~
S~=a

Program point

Block | Def

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS323, IIT Dharwad 27

Liveness in a CFG - Example

LiveOut (b) = Ui eS(b) leeln(l)
LiveOut(b3) = LivelIn(b4) = {A,B}

i e e eI _-— -
-
~-~o

~

Y
AN
AN
----_____——>\

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS323, IIT Dharwad 28

Liveness in a CFG - Example

- - - - _- - ———————————_——_——_——_—_____________
-
—_—————— - —_— P e -

LiveIn(b3) = LiveUse(b3) U (LiveOut(b3) - Def(b3))
= {} U ({A,B} - {C}) = {A,B}

LiveIn(b2) = LiveUse(b2) U (LiveOut(b2) - Def(b2))

={} U ({A,B} - {B}) = {A} . lw

~
~ -

B _ 1
.

bl {A} {B}
b2 B U

b3 (S Y

b4 {D} {A,B}

CS323, IIT Dharwad

29

Liveness in a CFG - Example

LiveOQOut (b) = i eS(b) leeln(l)

L1ve0ut(b1) = Liveln(b2) U Liveln(b3)
= {A} U {A,B} = {A,B}

~o
-~
-
-

Block | Def |LiveUse

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS323, IIT Dharwad 30

Liveness in a CFG - Example

- -
-
-

LiveIn(bl) = LiveUse(bl) U (LiveOut(bl) - Def(bl))
= {B} U ({A,B} - {A}) = {B}

Block | Def

bl A} {B}
b2 By i

b3 (S

b4 {D} {A,B}

CS323, IIT Dharwad

31

Liveness in a CFG - Example

e Summary: Compute LiveIn(b) and LiveOut(b)

LiveIn(b) =

LiveUse(b) U

(LiveOut(b) - Def(b))

Block | Def |LiveUse [l Block Liveln LiveOut ___

bl {A}
b2 {B}
b3 {C}

bl {D}

CS323, IIT Dharwad

{B}

{

i
{A,B}

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
bl {AB} {}

32

Liveness In a CFG — Use Case

* Assume that the CFG below represents your entire program (b1 is the

entry to program and b4 is the exit)

*What can you infer from the table?

b4

D := A+B
CS323, lIT Dharwad

Block | Liveln |LiveOut ___

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
bl {AB} {}

33

Liveness In a CFG — Use Case

* Assume that the CFG below represents your entire program
*Variable B is live at the entrance of b1, the entry basic block of
CFG. This implies that B is used before it is defined. An error!

Block | Liveln |LiveOut ___

bl {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {AB}
bl {AB} {}

D — A+B 34
CS323, IIT Dharwad

b4

<

Liveness in a CFG — Use Case

e Liveness information tells us what variable is dead. Can remove
statements that assign to dead variables.

X is dead here implies that we can

remove this sta‘w\t.
X =1

= 1 X =1 -
=X+2 > Y=1+2 > Y=1+2
=Y + A Z=Y +A Z=Y +A

Constant Propagation Dead Code Elimination

Liveness in a CFG — Example (Loop)

* How do we compute liveness information when a loop is present?

A :=0

b2

LOOP:
A

if (A<=10)
= A+l

b3

OUT:halt

CS323,

[IT Dharwad

mm

bl {A}
b2 {A} {A}
b3 v U

Block | Liveln | LiveOut__

bl U A}
b2 A; {A}
B3 U U

36

Liveness in @ CFG - Observations

* Liveness is computed as information is transferred
between adjacent statements
At a program point, a variable can be live or not live
(property: true or false)
* To begin with we did not have any
information=property is false

At a program point can the liveness information change?
* Yes, Liveness information changes from false to true
and not otherwise.

	Slide 1: CS323: Compilers Spring 2023
	Slide 2
	Slide 3
	Slide 4: Dataflow Analysis - Common Traits
	Slide 5
	Slide 6: Liveness – Recap..
	Slide 7: Liveness – Recap..
	Slide 8: Liveness in a CFG
	Slide 9: Liveness in a CFG
	Slide 10: Liveness in a CFG
	Slide 11: Liveness in a CFG
	Slide 12: Liveness in a CFG
	Slide 13: Liveness in a CFG - Observation
	Slide 14: Liveness in a CFG
	Slide 15: Liveness in a CFG
	Slide 16: Liveness in a CFG
	Slide 17: Liveness in a CFG
	Slide 18: Liveness in a CFG - Example
	Slide 19: Liveness in a CFG - Example
	Slide 20: Liveness in a CFG - Example
	Slide 21: Liveness in a CFG - Example
	Slide 22: Liveness in a CFG - Example
	Slide 23: Liveness in a CFG - Example
	Slide 24: Liveness in a CFG - Example
	Slide 25: Liveness in a CFG - Example
	Slide 26: Liveness in a CFG - Example
	Slide 27: Liveness in a CFG - Example
	Slide 28: Liveness in a CFG - Example
	Slide 29: Liveness in a CFG - Example
	Slide 30: Liveness in a CFG - Example
	Slide 31: Liveness in a CFG - Example
	Slide 32: Liveness in a CFG - Example
	Slide 33: Liveness in a CFG – Use Case
	Slide 34: Liveness in a CFG – Use Case
	Slide 35: Liveness in a CFG – Use Case
	Slide 36: Liveness in a CFG – Example (Loop)
	Slide 37: Liveness in a CFG - Observations
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

