
CS323: Compilers
Spring 2023

Week 11: Instruction Scheduling (contd..), Control 
Flow Graphs
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List scheduling - Example

2

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2
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Cycle # Available 

Instruction(s)

Scheduled 

Instruction(s)

Completed 

Instruction(s)

*an instruction from the 

list of available 

instructions is picked at 

random and scheduled
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R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

Height = 1 

because latency of ST = 1 

Height = 2 

because height = height of 

child + latency = 1 + 1 

Height = 2 

because height = height of 

child + latency = 2 + 2 

Height = 3 

because height = 

height of child + latency 

= 2 + 1 

Height = 5 

because height = 

height of child + 

latency = 3 + 2 

Height = max(height of 

all children) + latency 

= max(3, 4) + 2 = 4 + 2 

Height =  height of 

child + latency 

= 4 + 2
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Instruction Scheduling - Exercise

7

1: LD A R1

2: LD B R2

3: LD C R3

4: LD D R4

5: R5 = R1 + R2

6: R6 = R5 * R3

7: R7 = R1 + R6

8: R8 = R6 + R5

9: R9 = R4 + R7

10: R10 = R9 + R8

•2 ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available.

•Either of the ALUs can execute ADD (1 cycle). Only one of the ALUs can

execute MUL (2 cycles).

•LDs take up an ALU for 1 cycle and LD/ST unit for two cycles.

•STs take up an ALU for 1 cycle and LD/ST unit for one cycle.

i) Draw reservation tables, ii)DAG for the code shown iii) schedule using height

based list scheduling.

11: ST R10  E

12: ST R7  F
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Basic Blocks and Flow Graphs

• Basic Block
• Maximal sequence of consecutive instructions with the 

following properties:
• The first instruction of the basic block is the only entry point

• The last instruction of the basic block is either the halt 
instruction or the only exit point

• Flow Graph
• Nodes are the basic blocks

• Directed edge indicates which block follows which block
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Basic Blocks and Flow Graphs - Example
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if A = B then
C := 1;
D := 2;

else
E := 3

fi
A := 1;

A = B?

C := 1;
D := 2;

E := 3;

A := 1

A data flow graph

TRUE FALSE
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Flow Graphs

• Capture how control transfers between basic blocks 
due to:
• Conditional constructs

• Loops

• Are necessary when we want optimize considering 
larger parts of the program
• Multiple procedures

• Whole program
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Flow Graphs - Representation

• We need to label and track statements that are 
jump targets
• Explicit targets – targets mentioned in jump statement

• Implicit targets – targets that follow conditional jump 
statement
• Statement that is executed if the branch is not taken

• Implementation
• Linked lists for Basic Blocks

• Graph data structures for flow graphs
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{1}
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{1}
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{1,3}
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{1,3}
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{1,3,5}
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{1,3,5}

CS323, IIT Dharwad



24

{1,3,5,7}
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{1,3,5,7}
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{1,3,5,7}
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{1,3,5,7,10}
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{1,3,5,7,10,11}
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{1,3,5,7,10,11} Block(1) = ?
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{1,3,5,7,10,11} Block(1) = ?
Start from statement 2 and add 
till either the end or a leader is 
reachedCS323, IIT Dharwad
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{1,3,5,7,10,11} Block(1) = {1,2}
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{1,3,5,7,10,11} Block(3) = ?
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{1,3,5,7,10,11} Block(3) = {3,4}
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{1,3,5,7,10,11} Block(5) = ?
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{1,3,5,7,10,11} Block(5) = {5,6}
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{1,3,5,7,10,11} Block(7) = ?
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{1,3,5,7,10,11} Block(7) = {7,8,9}
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{1,3,5,7,10,11} Block(10) = ?
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{1,3,5,7,10,11} Block(10) = {10}
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{1,3,5,7,10,11} Block(11) = {11}

CS323, IIT Dharwad



41CS323, IIT Dharwad



42

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 1 to block 2
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2: t1 = A * B
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 4
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4: if t2 < W goto L2
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 3
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 3 to block 4
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6: t3 = M + I
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 6
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 5
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{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 5 to block 2
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Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)
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Control Flow Graphs - Use

• Why do we need CFGs? - Global Optimization 
• Optimizing compilers do global optimization ( i.e.  

optimize beyond basic blocks)
• Differentiating aspect of normal and optimizing compilers

• E.g. loops are the most frequent targets of global 
optimization (because they are often the “hot-spots” 
during program execution)

how do we identify loops in CFGs?
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Identify Loops in CFGs

• Loops – how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1) There is a loop entry node with the property that no 
other node in L has a predecessor outside L. That is, 
every path from entry of the entire flow graph (graph 
entry node) to any node in L goes through the loop entry 
node.

2) Every node in L has a non-empty path, completely 
within L, to the entry of L.
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Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs
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Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

NO. Why?
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Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?.  No. Consider:

1) There is a loop entry node with the property that no other 
node in L has a predecessor outside L. That is, every path 
from entry of the entire flow graph (graph entry node) to 
any node in L goes through the loop entry node.

57

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B4 has a predecessor B3 not in L
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Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?.  No. Consider:

• Every node in L has a non-empty path, completely within 
L, to the entry of L.

58

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B2 has a path B2->B3->B4->B5->B2
, where B3 is not in L
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Identify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.  

59

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6
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Optimizing Loops
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Optimize Loops

• Example - Code Motion

Should be careful while doing optimization of 
loops

61

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;
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Optimize Loops – Code Motion

• Should be careful while doing optimization of 
loops

• Optimization: can move 10/I out of loop.

62

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad



Optimize Loops – Code Motion

• Should be careful while doing optimization of 
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

63

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad



Optimize Loops – Code Motion

• Should be careful while doing optimization of 
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

• What if I != 0 but loop executes zero times?

64

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad



Optimization Criteria - Safety and 
Profitability

• Safety - is the code produced after optimization 
producing same result?

• Profitability - is the code produced after optimization 
running faster or uses less memory or triggers lesser 
number of page faults etc.

65

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

• E.g. moving I out of the loop 
introduces exception (when I=0)

• E.g. if the loop is executed zero 
times, moving A(j) := 10/I
out is not profitable
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Optimize Loops – Code Generation

• The outline of code generation for ‘for’ 
loops looked like this:
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for (i=0; i<=255;i++) {
<stmt_list>

}

code for i=0;
LOOP: code for i<=255 

jump0 OUT
code for <stmt_list>

INCR: code for i++
jump LOOP

OUT: 

Naïve code generation

Question: why naïve is not good?



Optimize Loops – Code Generation

• What happens when ub is set to the maximum possible integer 
representable by the type of i?
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for (i=0; i<=255;i++) {
<stmt_list>

}

code for i=0;
code for lb=0, ub=255
code for lb<=ub
jump0 OUT

LOOP: code for <stmt_list>
code for i=ub
jump1 OUT

INCR: code for i++
jump LOOP

OUT: 

Better code: code for i=0;
compute lb, ub
code for lb<=ub
jump0 OUT
assign index=lb
assign limit=ub

LOOP: code for <stmt_list>
code for index=limit
jump1 OUT

INCR: code for increment index
jump LOOP

OUT: 

generalizing: 



Optimize Loops -Identifying Invariant 
Expressions

• How do we identify expressions that can be 
moved out of the loop?
• LoopDef = {} set of variables defined (i.e. whose 

values are overwritten) in the loop body

• LoopUse = { } ‘relevant’ variables used in 
computing an expression  

68

Mark_Invariants(Loop L) {
1. Compute LoopDef for L
2. Mark as invariant all expressions, 

whose relevant variables don’t belong 
to LoopDef

}
CS406, IIT Dharwad



Optimize Loops -Identifying Invariant 
Expressions

• Example

69

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopDef{}

{A, K}
{A, J, K}

{A, J, K, I}
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Optimize Loops -Identifying Invariant 
Expressions

• Example

70

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopUse{}

{I,J}
{I}

{}
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Optimize Loops -Identifying Invariant 
Expressions

• Example

71

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant 
Expressions

{ I*J, 
Addr(A[i][j])}

*Assuming row-major ordering of storageCS406, IIT Dharwad

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) = 
Addr(A)+(I*10000)-10000+(J*100)-100+K-1



Optimize Loops -Identifying Invariant 
Expressions

• Example

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) = 

Addr(A)+(I*10000)-10000+(J*100)-100+K-1

72

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant 
Expressions

{ Addr(A[i]) }

*Assuming row-major ordering of storageCS406, IIT Dharwad



Optimize Loops -Factoring Invariant 
Expressions

• Move the invariant expressions identified

73

Factor_Invariants(Loop L) {
Mark_Invariants(L);
foreach expression E marked an invariant:

1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=E in L’s header code

// If loop is known to execute at least once, 
insert T:=E before LOOP:

}
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Optimize Loops -Factoring Invariant 
Expressions

• Example 

74

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

CS406, IIT Dharwad

//Invariant Expressions



Optimize Loops -Factoring Invariant 
Expressions

• Example 

75

for I = 1 to 100
for J = 1 to 100

temp1=A[I][J]
temp2=I*J
for K = 1 to 100

temp1[K] = temp2*K

CS406, IIT Dharwad



Optimize Loops -Factoring Invariant 
Expressions

• Example 

76

for I = 1 to 100
temp3=A[I]
for J = 1 to 100

temp1=temp3[J]
temp2=I*J
for K = 1 to 100

temp1[K] = temp2*K

CS406, IIT Dharwad



Optimize Loops -Factoring Invariant 
Expressions

• Expressions cannot always be moved out!

77

for (...) {
if(*)

a = 100
}
c=a

Cannot move a=100 because it does not dominate c=a i.e. there 
is one path (when if condition is false) c=a can be executed 
/’reached’ without going to a=100

CS406, IIT Dharwad

Case I: We can move t = a op b if the statement dominates all 
loop exits where t is live

A node bb1 dominates node bb2 if all paths to bb2 must go 
through bb1



Optimize Loops -Factoring Invariant 
Expressions

• Expressions cannot always be moved out!

78

for (...) {
if(*)

a = 100
else

a = 200
}

Multiple definition of a
CS406, IIT Dharwad

Case II: We can move t = a op b if there is only 
one definition of t in the loop



Optimize Loops -Factoring Invariant 
Expressions

• Expressions cannot always be moved out!

79

a=5
for (...) {

a = 4+b
}
c=a

Definition of a in a=5 reaches c=a, which is 
defined after the loop

CS406, IIT Dharwad

Case III: We can move t = a op b if t is not defined 
before the loop, where the definition reaches t’s use 
after the loop



Optimize Loops –Strength Reduction

• Like strength reduction in peephole optimization
• E.g. replace  a*2 with a<<1

• Applies to uses of induction variable in loops
• Basic induction variable (I) – only definition within 

the loop is of the form I = I ± S,  (S is loop 
invariant)

I usually determines number of iterations

• Mutual induction variable (J) – defined within the 
loop, its value is linear function of other induction 
variable, I, such that 

J = I * C ± D    (C, D are loop invariants)
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Optimize Loops –Strength Reduction

81

strength_reduce(Loop L) {
Mark_Invariants(L);
foreach expression E of the form I*C+D where I is 

L’s loop index and C and D are loop invariants
1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=Io*C+D, where Io is the initial value of the 

induction variable, immediately before L
4. Insert T:=T+S*C, where S is the step size, at the end of 

L’s body
}
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Optimize Loops –Strength Reduction

• Suppose induction variable I takes on values Io,
Io+S, Io+2S, Io+3S... in iterations 1, 2, 3, 
4, and so on…

• Then, in consecutive iterations, Expression 
I*C+D takes on values

• The expression changes by a constant S*C

• Therefore, we have replaced a * and + with a +

82

Io*C+D 
(Io+S)*C+D = Io*C+S*C+D
(Io+2S)*C+D = Io*C+2S*C+D
... ...

CS406, IIT Dharwad



Optimize Loops – Strength Reduction

• Example (Applying to innermost loop)

83

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K
. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

//S=1
//C=temp2
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Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

84

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K

. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

// Induction var = J
// S = 1
// Expression = I * J

CS406, IIT Dharwad



Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

85

.... . .
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I

...

CS406, IIT Dharwad



Optimize Loops – Strength Reduction

• Further strength reduction possible?

86

for I=1 to 100
temp3=Addr(A[i])
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I
CS406, IIT Dharwad



Optimize Loops – Loop Unrolling

87CS406, IIT Dharwad



Optimize Loops - Summary
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