
CS323: Compilers
Spring 2023

Week 11: Instruction Scheduling (contd..), Control
Flow Graphs

CS323, IIT Dharwad 1

Acknowledgements: Milind Kulkarni

List scheduling - Example

2

1. LD A, R1
2. LD B, R2
3. R3 = R1 + R2
4. LD C, R4
5. R5 = R4 * R2
6. R6 = R3 + R5
7. ST R6, D

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

0 1, 2, 4

1

2

3

4

5

6

7

8

9

10

Cycle # Available

Instruction(s)

Scheduled

Instruction(s)

Completed

Instruction(s)

*an instruction from the

list of available

instructions is picked at

random and scheduled

CS323, IIT Dharwad

1*

2, 4

2, 4 2* 1

4

3,4 3,4 2

3

5 5 4

56 6

67 7

7

3CS323, IIT Dharwad

4CS323, IIT Dharwad

5

R3 = R1 + R2 R5 = R4 * R2

R6 = R3 + R5

ST R6 D

LD A R1 LD B R2 LD C R4

2 2 2 2

1 2

1

Computing heights

(1)

(2)

(4)(3)

(5)

max(5, 6) = 6

(6)

Height = 1

because latency of ST = 1

Height = 2

because height = height of

child + latency = 1 + 1

Height = 2

because height = height of

child + latency = 2 + 2

Height = 3

because height =

height of child + latency

= 2 + 1

Height = 5

because height =

height of child +

latency = 3 + 2

Height = max(height of

all children) + latency

= max(3, 4) + 2 = 4 + 2

Height = height of

child + latency

= 4 + 2

CS323, IIT Dharwad

6CS323, IIT Dharwad

Instruction Scheduling - Exercise

7

1: LD A R1

2: LD B R2

3: LD C R3

4: LD D R4

5: R5 = R1 + R2

6: R6 = R5 * R3

7: R7 = R1 + R6

8: R8 = R6 + R5

9: R9 = R4 + R7

10: R10 = R9 + R8

•2 ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available.

•Either of the ALUs can execute ADD (1 cycle). Only one of the ALUs can

execute MUL (2 cycles).

•LDs take up an ALU for 1 cycle and LD/ST unit for two cycles.

•STs take up an ALU for 1 cycle and LD/ST unit for one cycle.

i) Draw reservation tables, ii)DAG for the code shown iii) schedule using height

based list scheduling.

11: ST R10 E

12: ST R7 F

CS323, IIT Dharwad

Basic Blocks and Flow Graphs

• Basic Block
• Maximal sequence of consecutive instructions with the

following properties:
• The first instruction of the basic block is the only entry point

• The last instruction of the basic block is either the halt
instruction or the only exit point

• Flow Graph
• Nodes are the basic blocks

• Directed edge indicates which block follows which block

8CS323, IIT Dharwad

Basic Blocks and Flow Graphs - Example

9

if A = B then
C := 1;
D := 2;

else
E := 3

fi
A := 1;

A = B?

C := 1;
D := 2;

E := 3;

A := 1

A data flow graph

TRUE FALSE

CS323, IIT Dharwad

Flow Graphs

• Capture how control transfers between basic blocks
due to:
• Conditional constructs

• Loops

• Are necessary when we want optimize considering
larger parts of the program
• Multiple procedures

• Whole program

10CS323, IIT Dharwad

Flow Graphs - Representation

• We need to label and track statements that are
jump targets
• Explicit targets – targets mentioned in jump statement

• Implicit targets – targets that follow conditional jump
statement
• Statement that is executed if the branch is not taken

• Implementation
• Linked lists for Basic Blocks

• Graph data structures for flow graphs

11CS323, IIT Dharwad

12CS323, IIT Dharwad

13CS323, IIT Dharwad

14CS323, IIT Dharwad

15CS323, IIT Dharwad

16CS323, IIT Dharwad

17CS323, IIT Dharwad

?

?

18

{1}

CS323, IIT Dharwad

19

{1}

CS323, IIT Dharwad

20

{1,3}

CS323, IIT Dharwad

21

{1,3}

CS323, IIT Dharwad

22

{1,3,5}

CS323, IIT Dharwad

23

{1,3,5}

CS323, IIT Dharwad

24

{1,3,5,7}

CS323, IIT Dharwad

25

{1,3,5,7}

CS323, IIT Dharwad

26

{1,3,5,7}

CS323, IIT Dharwad

27

{1,3,5,7,10}

CS323, IIT Dharwad

28

{1,3,5,7,10,11}

CS323, IIT Dharwad

?

29

{1,3,5,7,10,11} Block(1) = ?

CS323, IIT Dharwad

30

{1,3,5,7,10,11} Block(1) = ?
Start from statement 2 and add
till either the end or a leader is
reachedCS323, IIT Dharwad

31

{1,3,5,7,10,11} Block(1) = {1,2}

CS323, IIT Dharwad

32

{1,3,5,7,10,11} Block(3) = ?

CS323, IIT Dharwad

33

{1,3,5,7,10,11} Block(3) = {3,4}

CS323, IIT Dharwad

34

{1,3,5,7,10,11} Block(5) = ?

CS323, IIT Dharwad

35

{1,3,5,7,10,11} Block(5) = {5,6}

CS323, IIT Dharwad

36

{1,3,5,7,10,11} Block(7) = ?

CS323, IIT Dharwad

37

{1,3,5,7,10,11} Block(7) = {7,8,9}

CS323, IIT Dharwad

38

{1,3,5,7,10,11} Block(10) = ?

CS323, IIT Dharwad

39

{1,3,5,7,10,11} Block(10) = {10}

CS323, IIT Dharwad

40

{1,3,5,7,10,11} Block(11) = {11}

CS323, IIT Dharwad

41CS323, IIT Dharwad

42

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

CS323, IIT Dharwad

43

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 1 to block 2

CS323, IIT Dharwad

2: t1 = A * B

44

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 4

CS323, IIT Dharwad

4: if t2 < W goto L2

45

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 2 to block 3

CS323, IIT Dharwad

46

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 3 to block 4

CS323, IIT Dharwad

6: t3 = M + I

47

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 6

CS323, IIT Dharwad

48

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 4 to block 5

CS323, IIT Dharwad

49

{{1,2},{3,4},{5,6},{7,8,9},{10},{11}}

Edge from block 5 to block 2

CS323, IIT Dharwad

50

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

CS323, IIT Dharwad

51
Slide Courtesy: Milind Kulkarni

CS323, IIT Dharwad

52CS323, IIT Dharwad

Control Flow Graphs - Use

• Why do we need CFGs? - Global Optimization
• Optimizing compilers do global optimization (i.e.

optimize beyond basic blocks)
• Differentiating aspect of normal and optimizing compilers

• E.g. loops are the most frequent targets of global
optimization (because they are often the “hot-spots”
during program execution)

how do we identify loops in CFGs?

53CS323, IIT Dharwad

Identify Loops in CFGs

• Loops – how do we identify loops in CFGs?
For a set of nodes, L, that belong to loop:

1) There is a loop entry node with the property that no
other node in L has a predecessor outside L. That is,
every path from entry of the entire flow graph (graph
entry node) to any node in L goes through the loop entry
node.

2) Every node in L has a non-empty path, completely
within L, to the entry of L.

54CS323, IIT Dharwad

55

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

CS323, IIT Dharwad

56

Block(1)

Block(2)

Block(3)

Block(4)

Block(5)

Block(6)

Consider: {B2, B4, B5}. Is this a loop?, Are there other loops?

Identify Loops in CFGs

NO. Why?

CS323, IIT Dharwad

Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

1) There is a loop entry node with the property that no other
node in L has a predecessor outside L. That is, every path
from entry of the entire flow graph (graph entry node) to
any node in L goes through the loop entry node.

57

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B4 has a predecessor B3 not in L

CS323, IIT Dharwad

Identify Loops in CFGs

1) Is L={B2, B4, B5} a loop?. No. Consider:

• Every node in L has a non-empty path, completely within
L, to the entry of L.

58

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

B2 has a path B2->B3->B4->B5->B2
, where B3 is not in L

CS323, IIT Dharwad

Identify Loops in CFGs

1) Is L={B2, B3, B4, B5} a loop?.

59

graph entry node

loop entry node

B1

B2

B3

B4

B5

B6

CS323, IIT Dharwad

Optimizing Loops

CS323, IIT Dharwad 60

Optimize Loops

• Example - Code Motion

Should be careful while doing optimization of
loops

61

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop.

62

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

63

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimize Loops – Code Motion

• Should be careful while doing optimization of
loops

• Optimization: can move 10/I out of loop

• What if I = 0?

• What if I != 0 but loop executes zero times?

64

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

CS406, IIT Dharwad

Optimization Criteria - Safety and
Profitability

• Safety - is the code produced after optimization
producing same result?

• Profitability - is the code produced after optimization
running faster or uses less memory or triggers lesser
number of page faults etc.

65

while J > I loop
A(j) := 10/I;
j := j + 2;

end loop;

• E.g. moving I out of the loop
introduces exception (when I=0)

• E.g. if the loop is executed zero
times, moving A(j) := 10/I
out is not profitable

CS406, IIT Dharwad

Optimize Loops – Code Generation

• The outline of code generation for ‘for’
loops looked like this:

CS406, IIT Dharwad 66

for (i=0; i<=255;i++) {
<stmt_list>

}

code for i=0;
LOOP: code for i<=255

jump0 OUT
code for <stmt_list>

INCR: code for i++
jump LOOP

OUT:

Naïve code generation

Question: why naïve is not good?

Optimize Loops – Code Generation

• What happens when ub is set to the maximum possible integer
representable by the type of i?

CS406, IIT Dharwad 67

for (i=0; i<=255;i++) {
<stmt_list>

}

code for i=0;
code for lb=0, ub=255
code for lb<=ub
jump0 OUT

LOOP: code for <stmt_list>
code for i=ub
jump1 OUT

INCR: code for i++
jump LOOP

OUT:

Better code: code for i=0;
compute lb, ub
code for lb<=ub
jump0 OUT
assign index=lb
assign limit=ub

LOOP: code for <stmt_list>
code for index=limit
jump1 OUT

INCR: code for increment index
jump LOOP

OUT:

generalizing:

Optimize Loops -Identifying Invariant
Expressions

• How do we identify expressions that can be
moved out of the loop?
• LoopDef = {} set of variables defined (i.e. whose

values are overwritten) in the loop body

• LoopUse = { } ‘relevant’ variables used in
computing an expression

68

Mark_Invariants(Loop L) {
1. Compute LoopDef for L
2. Mark as invariant all expressions,

whose relevant variables don’t belong
to LoopDef

}
CS406, IIT Dharwad

Optimize Loops -Identifying Invariant
Expressions

• Example

69

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopDef{}

{A, K}
{A, J, K}

{A, J, K, I}

CS406, IIT Dharwad

Optimize Loops -Identifying Invariant
Expressions

• Example

70

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

LoopUse{}

{I,J}
{I}

{}

CS406, IIT Dharwad

Optimize Loops -Identifying Invariant
Expressions

• Example

71

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant
Expressions

{ I*J,
Addr(A[i][j])}

*Assuming row-major ordering of storageCS406, IIT Dharwad

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =
Addr(A)+(I*10000)-10000+(J*100)-100+K-1

Optimize Loops -Identifying Invariant
Expressions

• Example

For an array access, A[m] => Addr(A) + m

For 3D array above*, Addr(A[I][J][K]) =

Addr(A)+(I*10000)-10000+(J*100)-100+K-1

72

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

Invariant
Expressions

{ Addr(A[i]) }

*Assuming row-major ordering of storageCS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Move the invariant expressions identified

73

Factor_Invariants(Loop L) {
Mark_Invariants(L);
foreach expression E marked an invariant:

1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=E in L’s header code

// If loop is known to execute at least once,
insert T:=E before LOOP:

}

CS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Example

74

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

CS406, IIT Dharwad

//Invariant Expressions

Optimize Loops -Factoring Invariant
Expressions

• Example

75

for I = 1 to 100
for J = 1 to 100

temp1=A[I][J]
temp2=I*J
for K = 1 to 100

temp1[K] = temp2*K

CS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Example

76

for I = 1 to 100
temp3=A[I]
for J = 1 to 100

temp1=temp3[J]
temp2=I*J
for K = 1 to 100

temp1[K] = temp2*K

CS406, IIT Dharwad

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

77

for (...) {
if(*)

a = 100
}
c=a

Cannot move a=100 because it does not dominate c=a i.e. there
is one path (when if condition is false) c=a can be executed
/’reached’ without going to a=100

CS406, IIT Dharwad

Case I: We can move t = a op b if the statement dominates all
loop exits where t is live

A node bb1 dominates node bb2 if all paths to bb2 must go
through bb1

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

78

for (...) {
if(*)

a = 100
else

a = 200
}

Multiple definition of a
CS406, IIT Dharwad

Case II: We can move t = a op b if there is only
one definition of t in the loop

Optimize Loops -Factoring Invariant
Expressions

• Expressions cannot always be moved out!

79

a=5
for (...) {

a = 4+b
}
c=a

Definition of a in a=5 reaches c=a, which is
defined after the loop

CS406, IIT Dharwad

Case III: We can move t = a op b if t is not defined
before the loop, where the definition reaches t’s use
after the loop

Optimize Loops –Strength Reduction

• Like strength reduction in peephole optimization
• E.g. replace a*2 with a<<1

• Applies to uses of induction variable in loops
• Basic induction variable (I) – only definition within

the loop is of the form I = I ± S, (S is loop
invariant)

I usually determines number of iterations

• Mutual induction variable (J) – defined within the
loop, its value is linear function of other induction
variable, I, such that

J = I * C ± D (C, D are loop invariants)

80CS406, IIT Dharwad

Optimize Loops –Strength Reduction

81

strength_reduce(Loop L) {
Mark_Invariants(L);
foreach expression E of the form I*C+D where I is

L’s loop index and C and D are loop invariants
1. Create a temporary T
2. Replace each occurrence of E in L with T
3. Insert T:=Io*C+D, where Io is the initial value of the

induction variable, immediately before L
4. Insert T:=T+S*C, where S is the step size, at the end of

L’s body
}

CS406, IIT Dharwad

Optimize Loops –Strength Reduction

• Suppose induction variable I takes on values Io,
Io+S, Io+2S, Io+3S... in iterations 1, 2, 3,
4, and so on…

• Then, in consecutive iterations, Expression
I*C+D takes on values

• The expression changes by a constant S*C

• Therefore, we have replaced a * and + with a +

82

Io*C+D
(Io+S)*C+D = Io*C+S*C+D
(Io+2S)*C+D = Io*C+2S*C+D
... ...

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Example (Applying to innermost loop)

83

for I = 1 to 100
for J = 1 to 100

for K = 1 to 100
A[I][J][K] = (I*J)*K

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K
. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

//S=1
//C=temp2

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

84

for I=1 to 100
temp3=Addr(A[i])
for J=1 to 100

temp1=Addr(temp3(J))
temp2=I*J
for K=1 to 100

temp1[K]=temp2*K

. . .
temp2=I*J
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

// Induction var = J
// S = 1
// Expression = I * J

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Exercise (Apply to intermediate loop)

85

.... . .
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I

...

CS406, IIT Dharwad

Optimize Loops – Strength Reduction

• Further strength reduction possible?

86

for I=1 to 100
temp3=Addr(A[i])
temp5=I
for J=1 to 100

temp1=Addr(temp3(J))
temp2=temp5
temp4=temp2
for K=1 to 100

temp1[K]=temp4
temp4=temp4+temp2

temp5=temp5+I
CS406, IIT Dharwad

Optimize Loops – Loop Unrolling

87CS406, IIT Dharwad

Optimize Loops - Summary

88CS406, IIT Dharwad

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: List scheduling - Example
	Slide 3
	Slide 4
	Slide 5: Computing heights
	Slide 6
	Slide 7: Instruction Scheduling - Exercise
	Slide 8: Basic Blocks and Flow Graphs
	Slide 9: Basic Blocks and Flow Graphs - Example
	Slide 10: Flow Graphs
	Slide 11: Flow Graphs - Representation
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Control Flow Graphs - Use
	Slide 54: Identify Loops in CFGs
	Slide 55
	Slide 56
	Slide 57: Identify Loops in CFGs
	Slide 58: Identify Loops in CFGs
	Slide 59: Identify Loops in CFGs
	Slide 60: Optimizing Loops
	Slide 61: Optimize Loops
	Slide 62: Optimize Loops – Code Motion
	Slide 63: Optimize Loops – Code Motion
	Slide 64: Optimize Loops – Code Motion
	Slide 65: Optimization Criteria - Safety and Profitability
	Slide 66: Optimize Loops – Code Generation
	Slide 67: Optimize Loops – Code Generation
	Slide 68: Optimize Loops -Identifying Invariant Expressions
	Slide 69: Optimize Loops -Identifying Invariant Expressions
	Slide 70: Optimize Loops -Identifying Invariant Expressions
	Slide 71: Optimize Loops -Identifying Invariant Expressions
	Slide 72: Optimize Loops -Identifying Invariant Expressions
	Slide 73: Optimize Loops -Factoring Invariant Expressions
	Slide 74: Optimize Loops -Factoring Invariant Expressions
	Slide 75: Optimize Loops -Factoring Invariant Expressions
	Slide 76: Optimize Loops -Factoring Invariant Expressions
	Slide 77: Optimize Loops -Factoring Invariant Expressions
	Slide 78: Optimize Loops -Factoring Invariant Expressions
	Slide 79: Optimize Loops -Factoring Invariant Expressions
	Slide 80: Optimize Loops –Strength Reduction
	Slide 81: Optimize Loops –Strength Reduction
	Slide 82: Optimize Loops –Strength Reduction
	Slide 83: Optimize Loops – Strength Reduction
	Slide 84: Optimize Loops – Strength Reduction
	Slide 85: Optimize Loops – Strength Reduction
	Slide 86: Optimize Loops – Strength Reduction
	Slide 87: Optimize Loops – Loop Unrolling
	Slide 88: Optimize Loops - Summary
	Slide 89
	Slide 90
	Slide 91: Dataflow Analysis - Common Traits
	Slide 92
	Slide 93: Liveness – Recap..
	Slide 94: Liveness – Recap..
	Slide 95: Liveness in a CFG
	Slide 96: Liveness in a CFG
	Slide 97: Liveness in a CFG
	Slide 98: Liveness in a CFG
	Slide 99: Liveness in a CFG
	Slide 100: Liveness in a CFG - Observation
	Slide 101: Liveness in a CFG
	Slide 102: Liveness in a CFG
	Slide 103: Liveness in a CFG
	Slide 104: Liveness in a CFG
	Slide 105: Liveness in a CFG - Example
	Slide 106: Liveness in a CFG - Example
	Slide 107: Liveness in a CFG - Example
	Slide 108: Liveness in a CFG - Example
	Slide 109: Liveness in a CFG - Example
	Slide 110: Liveness in a CFG - Example
	Slide 111: Liveness in a CFG - Example
	Slide 112: Liveness in a CFG - Example
	Slide 113: Liveness in a CFG - Example
	Slide 114: Liveness in a CFG - Example
	Slide 115: Liveness in a CFG - Example
	Slide 116: Liveness in a CFG - Example
	Slide 117: Liveness in a CFG - Example
	Slide 118: Liveness in a CFG - Example
	Slide 119: Liveness in a CFG - Example
	Slide 120: Liveness in a CFG – Use Case
	Slide 121: Liveness in a CFG – Use Case
	Slide 122: Liveness in a CFG – Use Case
	Slide 123: Liveness in a CFG – Example (Loop)
	Slide 124: Liveness in a CFG - Observations
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132

