CS323: Compilers

Spring 2023

Week 10: Register allocation, Instruction Scheduling,
Control Flow Graphs

Acknowledgements: Milind Kulkarni

3 Address Code

ADD A B T1

ADD T1 C T2
ADD A B T3
ADD T1 T2 C

ADD T1 C T4
ADD T3 T2 D

Recall CSE

Available expression(s)

1}
{“A + B”}
{“A + B”, “T1l + C”}
{“A + B”, “T1 + C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C’}

{“A + B”, “T1 + T2”,

“T1 + C”, “T3 + T2”}

Killed
expression(s)

1d ¢ r3

{“T1+C”}

Generated Code
(assembly)

1d a ril;
1d b r2;

add rl r2 ri

jadd rl r3 rz

mov rl r3

add rl r2 r5
st r5 c

add rl c r4

add r3 r2 ré
st ré6 d

Register Allocation

« Simple code generation (in CSE example): use a register
for each temporary, load from a variable on each read, store

to a variable at each write

*What are the problems?
*Real machines have a limited number of registers — one register
per temporary may be too many

» Loading from and storing to variables on each use may produce a
lot of redundant loads and stores

Register Allocation

*Goal: allocate temporaries and variables to registers to:
*Use only as many registers as machine supports

*Minimize loading and storing variables to memory (keep variables
In registers when possible)

*Minimize putting temporaries on stack (“spilling”)

Global vs. Local

«Same distinction as global vs. local CSE
Local register allocation is for a single basic block

*Global register allocation is for an entire function

Does inter-procedural register allocation make sense? Why? Why not?
Hint: think about caller-save, callee-save registers

When we handle function calls, registers are pushed/popped from stack

Top-down register allocation

® For each basic block

® Find the number of references of each variable

® Assign registers to variables with the most references
® Details

e Keep some registers free for operations on unassigned
variables and spilling

® Store dirty registers at the end of BB (i.e., registers which
have variables assigned to them)

® Do not need to do this for temporaries (why?)

CS323, IIT Dharwad

Bottom-up register allocation

® Smarter approach:

® Free registers once the data in them isn’t used anymore
e Requires calculating liveness

e A variable is live if it has a value that may be used in the future
® Easy to calculate if you have a single basic block:

® Start at end of block, all local variables marked dead

e |f you have multiple basic blocks, all local variables defined in the
block should be live (they may be used in the future)

® When a variable is used, mark as live, record use
® \When a variable is defined, record def, variable dead above this
e Creates chains linking uses of variables to where they were defined

e We will discuss how to calculate this across BBs later

CS323, IIT Dharwad

Bottom-up register allocation

For each tuple opA B Cin a BB, do
Rx = ensure(A)
Ry = ensure(B)
if A dead after this tuple, (Rx)
if B dead after this tuple, (Ry)
R: = (C) /lcould use Rxor Ry
generate code for op
mark Rz dirty

At end of BB, for each dirty register
generate code to store register into appropriate variable

® We will present this as if A, B, C are variables in memory.
Can be modified to assume that A, B and C are in virtual
registers, instead

Bottom-up register allocation

ensure(opr)
if opr is already in register r
return r
else
r = allocate(opr)
generate load from opr into r
return r

(r)
if r is marked dirty and variable is live
generate store

mark r as free

(opr)
if there is a free r

choose r
else

choose r to free

free(r)
mark r associated with opr
return r

Liveness Example
e What is live in this code? Recall: a variable is live only if its value is used in future.

Live Comments
1: A=B + C {A, B} Used B, C Killed A
2: C=A + B {A, B, C} Used A, B Killed C
3: T1 =B + C {A, B, C, T1} Used B, C Killed T1
4: T2 = T1 + C {A, B, C, T2} Used T1, C Killed T2
5: D = T2 {A, B, C, D} Used T2, Killed D
6: E=A + B {C, D, E} Used A, B Killed E
7: B=E + D {B, C, D} Used E, D Killed B
8: A=C+ D {A, B} Used C, D Killed A
9: T3 = A + B {T3} Used A, B Killed T3
"10: WRITE(T3) {} Used T3

10

Bottom-up register allocation - Example

. Registers
Live Rl R2 R3 R4
1: A =7 {A} A* mov 7 rl
2: B =A + 2 |[{A, B} A* | B* add r1 2 r2
3: C=A + B [{A, B, C} A* |B* |C* add r1l r2 r3
4:0=A+8 {8 CDF - DHBTCT) T
5: A=C+ B |{A, B, C, D} D* |B* [C* |A* |add r3 r2 r4
6: B=C+ B {A’ B’ C’ D} s;killBr';k— aihes&?stor‘aedsg{ {\I}‘%f 2é12d g‘izr‘ty)
7: E=C +D | {A, B, C, D, E}D*|E* |C* A* | ad4d r3 r1 r2
8 F=C+D {A B, E, F} |FrEr| v s
rs;
9: G =A+B |{E, F, G} F* |E* |G* add r4 r3 r3
19: H=E + F|{H, G} H* G* add r2 ri ri
(Load since B |not in r‘eg. Free dead regs)
11: T =H + G| {1} I* add r1 r3 ril
12: WRITE(I) || {} write ri
11

Instruction Scheduling

13

Instruction Scheduling

® Code generation has created a sequence of assembly
instructions

® But that is not the only valid order in which instructions could
be executed!

LD A,RI LD C,R4
LD B,R2 LD B, R2
R3 =RI +R2 LD A,RI
LD C, R4 » R5=R4*R2
R5 = R4 * R2 R3 =RI +R2
R6 =R3 +R5 R6 =R3 +R5
ST R6,D ST R6,D

e Different orders can give you better performance, more
instruction level parallelism, etc.

CS323, IIT Dharwad 14

Why do Instruction Scheduling?

® Not all instructions are the same

® |oads tend to take longer than stores, multiplies tend to
take longer than adds

® Hardware can overlap execution of instructions (pipelining)
® (Can do some work while waiting for a load to complete

® Hardware can execute multiple instructions at the same
time (superscalar)

® Hardware has multiple functional units

CS323, IIT Dharwad 15

Why do Instruction Scheduling? Contd..

® VLIW (very long instruction word)
® Popular in the 1990s, still common in some DSPs

® Relies on compiler to find best schedule for instructions,
manage instruction-level parallelism

® |Instruction scheduling is vital
® OQut-of-order superscalar

® Standard design for most CPUs (some low energy chips, like
in phones, may be in-order)

® Hardware does scheduling, but in limited window of
instructions

® Compiler scheduling still useful to make hardware’s life easier

CS323, IIT Dharwad

16

Instruction Scheduling - Considerations

Gather constraints on schedule:
Data dependences between instructions
*Resource constraints

*Schedule instructions while respecting constraints
eList scheduling
*Height-based heuristic

17

Data dependence constraints

* Are all instruction orders legal?

a=b + C

\

d=a+ 3
e=f+d

* Dependences between instructions prevent reordering

CS323, IIT Dharwad

18

Data dependences

® Variables/registers defined in one instruction are used in a
later instruction: flow dependence

® Variables/registers used in one instruction are overwritten
by a later instruction: anti dependence

® Variables/registers defined in one instruction are
overwritten by a later instruction: output dependence

® Data dependences prevent instructions from being
reordered, or executed at the same time.

CS323, IIT Dharwad

19

Other constraints

® Some architectures have more than one ALU

a=b*c These instructions do not have any
d=e+f dependence. Can be executed in parallel

® But what if there is only one ALU?

® Cannot execute in parallel

® [f a multiply takes two cycles to complete, cannot even

execute the second instruction immediately after the
first

¢ Resource constraints are limitations of the hardware
that prevent instructions from executing at a certain time

CS323, IIT Dharwad 20

Representing constraints

® Dependence constraints and resource constraints limit
valid orders of instructions

® [nstruction scheduling goal:

® For each instruction in a program (basic block), assign it
a scheduling slot

® Which functional unit to execute on, and when
® As long as we obey all of the constraints

® So how do we represent constraints?

CS323, IIT Dharwad

21

Data dependence graph

® Graph that captures data dependence constraints
® FEach node represents one instruction

® FEach edge represents a dependence from one instruction
to another

® |label edges with instruction latency (how long the first
instruction takes to complete = how long we have to wait
before scheduling the second instruction)

CS323, IIT Dharwad

22

® ADD takes | cycle
® MUL takes 2 cycles
® LD takes 2 cycles

® ST takes | cycle

CS323, IIT Dharwad

Example

LD A,RI
LD B, R2
R3 =Rl +R2
LD C,R4
R5 = R4 * R2
R6 = R3 +R5
ST R6,D

23

LD A,RI
LD B, R2
R3 =RI + R2
LD C, R4
R5 = R4 * R2
R6 = R3 + R5
ST R6,D

ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle

CS323, IIT Dharwad

Example

R6 = R3 + R5

24

Reservation tables

e Represent resource constraints using reservation tables

e For each instruction, table shows which functional units are
occupied in each cycle the instruction executes

® # rows: latency of instruction
® # columns: number of functional units

e T[i][j] marked <« functional unit j occupied during cycle i

e (Caveat: some functional units are pipelined: instruction
takes multiple cycles to complete, but only occupies the
unit for the first cycle

e Some instructions have multiple ways they can execute: one
table per variant

CS323, IIT Dharwad

25

Example

® Two ALUs, fully pipelined e ADD takes | cycle
® One LD/ST unit, not pipelined ® MUL takes 2 cycles
® ADDs can execute on ALUO or ALUI ¢ LD takes 2 cycles
® MULs can execute on ALUO only ® ST takes | cycle

® | OADs and STOREs both occupy the LD/ST unit

ALUO |ALUl1 |LD/ST

CS323, IIT Dharwad 26

Example

* Two ALUSs, fully pipelined
* One LD/ST unit, not pipelined

ALUO |ALUl1 |LD/ST

CS323, IIT Dharwad

Example

» Two ALUs, fully pipelined = ISEUDIEIES e
* One LD/ST unit, not pipelined ® MUL takes 2 cycles

* ADDs can execute on ALUO or ALU1 e LD takes 2 cycles

e ST takes | cycle

ALU® |ALU1 |LD/ST ALU@ |ALUL |LD/ST
X X
ADD (1) ADD (2)

CS323, IIT Dharwad 28

Example

* Two ALUSs, fully pipelined

* One LD/ST unit, not pipelined
* ADDs can execute on ALUO or ALU1
« MULSs can execute on ALUO only

ALUO

ALU1 | LD/ST

X

CS323, IIT Dharwad

MUL

ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle

29

Example

» Two ALUs, fully pipelined = ISEUDIEIES e
* One LD/ST unit, not pipelined ® MUL takes 2 cycles
* ADDs can execute on ALUO or ALU1
« MULs can execute on ALUO only

« LOADs and STORES can execute on ool
LD/ST unit only

® |D takes 2 cycles

ALUO |ALU1 |LD/ST
X
X

ALUO |ALU1 |LD/ST

LOAD STORE

30

Example

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LD/ST
MUL X

Can use reservation tables to see if instructions
can be scheduled: see if tables overlap

MUL still takes two
cycles. Since ALU is fully
pipelined, only occupies

the ALU for |

31

Using tables

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LDAST Which of the sequences below are valid?
MUL X | = run instructions in same cycle
; = move to next cycle

ADD |ADD v MUL;MUL |ADD v
ADD |MUL Vv LOAD | MUL v STORE ; LOAD v
MUL | MUL x LOAD ;STORE x

CS323, IIT Dharwad

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Recall CSE
	Slide 3: Register Allocation
	Slide 4: Register Allocation
	Slide 5: Global vs. Local
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Liveness Example
	Slide 11: Bottom-up register allocation - Example
	Slide 13: Instruction Scheduling
	Slide 14: Instruction Scheduling
	Slide 15: Why do Instruction Scheduling?
	Slide 16: Why do Instruction Scheduling? Contd..
	Slide 17: Instruction Scheduling - Considerations
	Slide 18: Data dependence constraints
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Example
	Slide 25
	Slide 26
	Slide 27: Example
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: List scheduling - Example
	Slide 36
	Slide 37
	Slide 38: Computing heights
	Slide 39
	Slide 40: Instruction Scheduling - Exercise
	Slide 41: Basic Blocks and Flow Graphs
	Slide 42: Basic Blocks and Flow Graphs - Example
	Slide 43: Flow Graphs
	Slide 44: Flow Graphs - Representation
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Control Flow Graphs - Use
	Slide 87: Identify Loops in CFGs
	Slide 88
	Slide 89
	Slide 90: Identify Loops in CFGs
	Slide 91: Identify Loops in CFGs
	Slide 92: Identify Loops in CFGs

