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3 Address Code

ADD A B T1

ADD T1 C T2
ADD A B T3
ADD T1 T2 C

ADD T1 C T4
ADD T3 T2 D

Recall CSE

Available expression(s)

1}
{“A + B”}
{“A + B”, “T1l + C”}
{“A + B”, “T1 + C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C’}

{“A + B”, “T1 + T2”,

“T1 + C”, “T3 + T2”}

Killed
expression(s)

1d ¢ r3

{“T1+C”}

Generated Code
(assembly)

1d a ril;
1d b r2;

add rl r2 ri

jadd rl r3 rz

mov rl r3

add rl r2 r5
st r5 c

add rl c r4

add r3 r2 ré
st ré6 d




Register Allocation

« Simple code generation (in CSE example): use a register
for each temporary, load from a variable on each read, store

to a variable at each write

*What are the problems?
*Real machines have a limited number of registers — one register
per temporary may be too many

» Loading from and storing to variables on each use may produce a
lot of redundant loads and stores



Register Allocation

*Goal: allocate temporaries and variables to registers to:
*Use only as many registers as machine supports

*Minimize loading and storing variables to memory (keep variables
In registers when possible)

*Minimize putting temporaries on stack (“spilling”)



Global vs. Local

«Same distinction as global vs. local CSE
Local register allocation is for a single basic block

*Global register allocation is for an entire function

Does inter-procedural register allocation make sense? Why? Why not?
Hint: think about caller-save, callee-save registers

When we handle function calls, registers are pushed/popped from stack



Top-down register allocation

® For each basic block

® Find the number of references of each variable

® Assign registers to variables with the most references
® Details

e Keep some registers free for operations on unassigned
variables and spilling

® Store dirty registers at the end of BB (i.e., registers which
have variables assigned to them)

® Do not need to do this for temporaries (why?)
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Bottom-up register allocation

® Smarter approach:

® Free registers once the data in them isn’t used anymore
e Requires calculating liveness

e A variable is live if it has a value that may be used in the future
® Easy to calculate if you have a single basic block:

® Start at end of block, all local variables marked dead

e |f you have multiple basic blocks, all local variables defined in the
block should be live (they may be used in the future)

® When a variable is used, mark as live, record use
® \When a variable is defined, record def, variable dead above this
e Creates chains linking uses of variables to where they were defined

e We will discuss how to calculate this across BBs later

CS323, IIT Dharwad



Bottom-up register allocation

For each tuple opA B Cin a BB, do
Rx = ensure(A)
Ry = ensure(B)
if A dead after this tuple, (Rx)
if B dead after this tuple, (Ry)
R: = (C) /lcould use Rxor Ry
generate code for op
mark Rz dirty

At end of BB, for each dirty register
generate code to store register into appropriate variable

® We will present this as if A, B, C are variables in memory.
Can be modified to assume that A, B and C are in virtual
registers, instead



Bottom-up register allocation

ensure(opr)
if opr is already in register r
return r
else
r = allocate(opr)
generate load from opr into r
return r

(r)
if r is marked dirty and variable is live
generate store

mark r as free

(opr)
if there is a free r

choose r
else

choose r to free

free(r)
mark r associated with opr
return r




Liveness Example
e What is live in this code? Recall: a variable is live only if its value is used in future.

Live Comments
1: A=B + C {A, B} Used B, C Killed A
2: C=A + B {A, B, C} Used A, B Killed C
3: T1 =B + C {A, B, C, T1} Used B, C Killed T1
4: T2 = T1 + C {A, B, C, T2} Used T1, C Killed T2
5: D = T2 {A, B, C, D} Used T2, Killed D
6: E=A + B {C, D, E} Used A, B Killed E
7: B=E + D {B, C, D} Used E, D Killed B
8: A=C+ D {A, B} Used C, D Killed A
9: T3 = A + B {T3} Used A, B Killed T3
"10: WRITE(T3) {} Used T3
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Bottom-up register allocation - Example

. Registers
Live Rl R2 R3 R4
1: A =7 {A} A* mov 7 rl
2: B =A + 2 |[{A, B} A* | B* add r1 2 r2
3: C=A + B [{A, B, C} A* |B* |C* add r1l r2 r3
4:0=A+8 {8 CDF - DHBTCT) T
5: A=C+ B |{A, B, C, D} D* |B* [C* |A* |add r3 r2 r4
6: B=C+ B {A’ B’ C’ D} s;killBr';k— aihes&?stor‘aedsg{ {\I}‘%f 2é12d g‘izr‘ty)
7: E=C +D | {A, B, C, D, E}D*|E* |C* A* | ad4d r3 r1 r2
8 F=C+D {A B, E, F} |FrEr| v s
rs;
9: G =A+B |{E, F, G} F* |E* |G* add r4 r3 r3
19: H=E + F|{H, G} H* G* add r2 ri ri
(Load since B |not in r‘eg. Free dead regs)
11: T =H + G| {1} I* add r1 r3 ril
12: WRITE(I) || {} write ri
11




Instruction Scheduling
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Instruction Scheduling

® Code generation has created a sequence of assembly
instructions

® But that is not the only valid order in which instructions could
be executed!

LD A,RI LD C,R4
LD B,R2 LD B, R2
R3 =RI +R2 LD A,RI
LD C, R4 » R5=R4*R2
R5 = R4 * R2 R3 =RI +R2
R6 =R3 +R5 R6 =R3 +R5
ST R6,D ST R6,D

e Different orders can give you better performance, more
instruction level parallelism, etc.
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Why do Instruction Scheduling?

® Not all instructions are the same

® |oads tend to take longer than stores, multiplies tend to
take longer than adds

® Hardware can overlap execution of instructions (pipelining)
® (Can do some work while waiting for a load to complete

® Hardware can execute multiple instructions at the same
time (superscalar)

® Hardware has multiple functional units
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Why do Instruction Scheduling? Contd..

® VLIW (very long instruction word)
® Popular in the 1990s, still common in some DSPs

® Relies on compiler to find best schedule for instructions,
manage instruction-level parallelism

® |Instruction scheduling is vital
® OQut-of-order superscalar

® Standard design for most CPUs (some low energy chips, like
in phones, may be in-order)

® Hardware does scheduling, but in limited window of
instructions

® Compiler scheduling still useful to make hardware’s life easier
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Instruction Scheduling - Considerations

Gather constraints on schedule:
Data dependences between instructions
*Resource constraints

*Schedule instructions while respecting constraints
eList scheduling
*Height-based heuristic

17



Data dependence constraints

* Are all instruction orders legal?

a=b + C

\

d=a+ 3
e=f+d

* Dependences between instructions prevent reordering
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Data dependences

® Variables/registers defined in one instruction are used in a
later instruction: flow dependence

® Variables/registers used in one instruction are overwritten
by a later instruction: anti dependence

® Variables/registers defined in one instruction are
overwritten by a later instruction: output dependence

® Data dependences prevent instructions from being
reordered, or executed at the same time.
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Other constraints

® Some architectures have more than one ALU

a=b*c These instructions do not have any
d=e+f dependence. Can be executed in parallel

® But what if there is only one ALU?

® Cannot execute in parallel

® [f a multiply takes two cycles to complete, cannot even

execute the second instruction immediately after the
first

¢ Resource constraints are limitations of the hardware
that prevent instructions from executing at a certain time
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Representing constraints

® Dependence constraints and resource constraints limit
valid orders of instructions

® [nstruction scheduling goal:

® For each instruction in a program (basic block), assign it
a scheduling slot

® Which functional unit to execute on, and when
® As long as we obey all of the constraints

® So how do we represent constraints?
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Data dependence graph

® Graph that captures data dependence constraints
® FEach node represents one instruction

® FEach edge represents a dependence from one instruction
to another

® |label edges with instruction latency (how long the first
instruction takes to complete = how long we have to wait
before scheduling the second instruction)
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® ADD takes | cycle
® MUL takes 2 cycles
® LD takes 2 cycles

® ST takes | cycle
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Example

LD A,RI
LD B, R2
R3 =Rl +R2
LD C,R4
R5 = R4 * R2
R6 = R3 +R5
ST R6,D

23



LD A,RI
LD B, R2
R3 =RI + R2
LD C, R4
R5 = R4 * R2
R6 = R3 + R5
ST R6,D

ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle
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Example

R6 = R3 + R5
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Reservation tables

e Represent resource constraints using reservation tables

e For each instruction, table shows which functional units are
occupied in each cycle the instruction executes

® # rows: latency of instruction
® # columns: number of functional units

e T[i][j] marked <« functional unit j occupied during cycle i

e (Caveat: some functional units are pipelined: instruction
takes multiple cycles to complete, but only occupies the
unit for the first cycle

e Some instructions have multiple ways they can execute: one
table per variant

CS323, IIT Dharwad
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Example

® Two ALUs, fully pipelined e ADD takes | cycle
® One LD/ST unit, not pipelined ® MUL takes 2 cycles
® ADDs can execute on ALUO or ALUI ¢ LD takes 2 cycles
® MULs can execute on ALUO only ® ST takes | cycle

® | OADs and STOREs both occupy the LD/ST unit

ALUO |ALUl1 |LD/ST
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Example

* Two ALUSs, fully pipelined
* One LD/ST unit, not pipelined

ALUO |ALUl1 |LD/ST
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Example

» Two ALUs, fully pipelined = ISEUDIEIES e
* One LD/ST unit, not pipelined ® MUL takes 2 cycles

* ADDs can execute on ALUO or ALU1 e LD takes 2 cycles

e ST takes | cycle

ALU® |ALU1 |LD/ST ALU@ |ALUL |LD/ST
X X
ADD (1) ADD (2)
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Example

* Two ALUSs, fully pipelined

* One LD/ST unit, not pipelined
* ADDs can execute on ALUO or ALU1
« MULSs can execute on ALUO only

ALUO

ALU1 | LD/ST

X
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MUL

ADD takes | cycle
MUL takes 2 cycles
LD takes 2 cycles
ST takes | cycle
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Example

» Two ALUs, fully pipelined = ISEUDIEIES e
* One LD/ST unit, not pipelined ® MUL takes 2 cycles
* ADDs can execute on ALUO or ALU1
« MULs can execute on ALUO only

« LOADs and STORES can execute on ool
LD/ST unit only

® |D takes 2 cycles

ALUO |ALU1 |LD/ST
X
X

ALUO |ALU1 |LD/ST

LOAD STORE
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Example

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LD/ST
MUL X

Can use reservation tables to see if instructions
can be scheduled: see if tables overlap

MUL still takes two
cycles. Since ALU is fully
pipelined, only occupies

the ALU for |
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Using tables

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(l) | X LOAD X
X

ALUO | ALUI | LD/ST ALUO | ALUI | LD/ST
ADD(2) X STORE X

ALUO | ALUI | LDAST Which of the sequences below are valid?
MUL X | = run instructions in same cycle
; = move to next cycle

ADD |ADD v MUL;MUL |ADD v
ADD |MUL Vv LOAD | MUL v STORE ; LOAD v
MUL | MUL x LOAD ;STORE x
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