
CS323: Compilers
Spring 2023

Week 10: Register allocation, Instruction Scheduling, 
Control Flow Graphs
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Recall CSE
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Generated Code 

(assembly)

3 Address Code Available expression(s)

Killed 

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”, 
“T1 + C”, “T3 + T2”}

add r1 r2 r1

ld c r3;add r1 r3 r2

mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

ld a r1; 
ld b r2;
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Register Allocation
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• Simple code generation (in CSE example): use a register 

for each temporary, load from a variable on each read, store 

to a variable at each write

•What are the problems?

•Real machines have a limited number of registers – one register 

per temporary may be too many

• Loading from and storing to variables on each use may produce a 

lot of redundant loads and stores
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Register Allocation
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•Goal: allocate temporaries and variables to registers to:

•Use only as many registers as machine supports

•Minimize loading and storing variables to memory (keep variables 

in registers when possible)

•Minimize putting temporaries on stack (“spilling”)
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Global vs. Local
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•Same distinction as global vs. local CSE
•Local register allocation is for a single basic block

•Global register allocation is for an entire function 

Hint: think about caller-save, callee-save registers
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Does inter-procedural register allocation make sense? Why? Why not?

When we handle function calls, registers are pushed/popped from stack
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Liveness Example
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Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

{A, B}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Used B, C Killed A
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Recall: a variable is live only if its value is used in future.



Bottom-up register allocation - Example
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Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2

(spill r2 – farthest, store if live and dirty)

F* E*    A* add r3 r1 r1
(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3

(Load since B not in reg. Free dead regs)

H*    G* add r2 r1 r1

I* add r1 r3 r1

write r1
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Instruction Scheduling
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Instruction Scheduling
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Why do Instruction Scheduling?
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Why do Instruction Scheduling? Contd..
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Instruction Scheduling - Considerations

17

•Gather constraints on schedule:

•Data dependences between instructions 

•Resource constraints

•Schedule instructions while respecting constraints

•List scheduling

•Height-based heuristic
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Data dependence constraints

• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d

• Dependences between instructions prevent reordering
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R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Example
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ALU0 ALU1 LD/ST
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

ALU0 ALU1 LD/ST
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ADD (1) ADD (2)
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

ALU0 ALU1 LD/ST

X

MUL
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Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

• LOADs and STOREs can execute on 

LD/ST unit only

ALU0 ALU1 LD/ST

X

X

ALU0 ALU1 LD/ST

X

LOAD STORE
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✓

✓ ✓

✓ ✓
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