
CS323: Compilers
Spring 2023

Week 10: Register allocation, Instruction Scheduling, 
Control Flow Graphs

CS323, IIT Dharwad 1

Acknowledgements: Milind Kulkarni



Recall CSE

2

Generated Code 

(assembly)

3 Address Code Available expression(s)

Killed 

expression(s)

ADD A B T1

ADD T1 C T2

ADD A B T3

ADD T1 T2 C

ADD T1 C T4

ADD T3 T2 D

{“A + B”}

{}

{“A + B”, “T1 + C”}

{“A + B”, “T1 + C”} {“T1+C”}

{“A + B”, “T1 + T2”}

{“A + B”, “T1 + T2”,
“T1 + C”}

{“A + B”, “T1 + T2”, 
“T1 + C”, “T3 + T2”}

add r1 r2 r1

ld c r3;add r1 r3 r2

mov r1 r3

add r1 r2 r5
st r5 c

add r1 c r4

add r3 r2 r6
st r6 d

ld a r1; 
ld b r2;

CS323, IIT Dharwad



Register Allocation

3

• Simple code generation (in CSE example): use a register 

for each temporary, load from a variable on each read, store 

to a variable at each write

•What are the problems?

•Real machines have a limited number of registers – one register 

per temporary may be too many

• Loading from and storing to variables on each use may produce a 

lot of redundant loads and stores

CS323, IIT Dharwad



Register Allocation

4

•Goal: allocate temporaries and variables to registers to:

•Use only as many registers as machine supports

•Minimize loading and storing variables to memory (keep variables 

in registers when possible)

•Minimize putting temporaries on stack (“spilling”)

CS323, IIT Dharwad



Global vs. Local

5

•Same distinction as global vs. local CSE
•Local register allocation is for a single basic block

•Global register allocation is for an entire function 

Hint: think about caller-save, callee-save registers

CS323, IIT Dharwad

Does inter-procedural register allocation make sense? Why? Why not?

When we handle function calls, registers are pushed/popped from stack



6CS323, IIT Dharwad



7CS323, IIT Dharwad



8CS323, IIT Dharwad



9CS323, IIT Dharwad



Liveness Example

10

Live

1: A = B + C

2: C = A + B

3: T1 = B + C

4: T2 = T1 + C

5: D = T2

6: E = A + B

7: B = E + D

8: A = C + D

9: T3 = A + B

10: WRITE(T3)

{A, B}

{T3}
{}

• What is live in this code?

{B, C, D}

{C, D, E}

{A, B, C, D}

{A, B, C, T2}

{A, B, C, T1}

{A, B, C}

{A, B}

Comments

Used T3

Used A, B Killed T3

Used C, D Killed A

Used E, D Killed B

Used A, B Killed E

Used T2, Killed D

Used T1, C Killed T2

Used B, C Killed T1

Used A, B Killed C

Used B, C Killed A

CS323, IIT Dharwad

Recall: a variable is live only if its value is used in future.



Bottom-up register allocation - Example

11

Live

1: A = 7

2: B = A + 2

3: C = A + B

4: D = A + B

5: A = C + B

6: B = C + B

7: E = C + D

8: F = C + D

9: G = A + B

10: H = E + F

11: I = H + G

12: WRITE(I)

{H, G}

{I}
{}

{E, F, G}

{A, B, E, F}

{A, B, C, D, E}

{A, B, C, D}

{A, B, C, D}

{B, C, D}

{A, B, C}

Registers

R1    R2    R3    R4

add r1 r2 r3

add r1 2 r2

mov 7 r1

{A, B}
{A} A*

A* B*

A* B* C*
D* B* C* add r1 r2 r1

(free r1 – dead)

D* B* C* A*
D* B* C* A*

add r3 r2 r4

add r3 r2 r2

D* E* C* A*
st r2 B; 

add r3 r1 r2

(spill r2 – farthest, store if live and dirty)

F* E*    A* add r3 r1 r1
(Free dead )

F* E* G*
ld b r3; 

add r4 r3 r3

(Load since B not in reg. Free dead regs)

H*    G* add r2 r1 r1

I* add r1 r3 r1

write r1

CS323, IIT Dharwad



Instruction Scheduling

13CS323, IIT Dharwad



Instruction Scheduling

14CS323, IIT Dharwad



Why do Instruction Scheduling?

15CS323, IIT Dharwad



Why do Instruction Scheduling? Contd..

16CS323, IIT Dharwad



Instruction Scheduling - Considerations

17

•Gather constraints on schedule:

•Data dependences between instructions 

•Resource constraints

•Schedule instructions while respecting constraints

•List scheduling

•Height-based heuristic

CS323, IIT Dharwad



18

Data dependence constraints

• Are all instruction orders legal?

a = b + c

d = a + 3

e = f + d

• Dependences between instructions prevent reordering

CS323, IIT Dharwad



19CS323, IIT Dharwad



20CS323, IIT Dharwad



21CS323, IIT Dharwad



22CS323, IIT Dharwad



23CS323, IIT Dharwad



24

R3 = R1 + R2 R5 = R4 * R2 

R6 = R3 + R5 

ST R6 D 

LD A R1 LD B R2 LD C R4 

2 2 2 2

1 2

1

Example

CS323, IIT Dharwad



25CS323, IIT Dharwad



26

ALU0 ALU1 LD/ST

CS323, IIT Dharwad



27

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

ALU0 ALU1 LD/ST

CS323, IIT Dharwad



28

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

ALU0 ALU1 LD/ST

X

ALU0 ALU1 LD/ST

X

ADD (1) ADD (2)

CS323, IIT Dharwad



29

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

ALU0 ALU1 LD/ST

X

MUL

CS323, IIT Dharwad



30

Example

• Two ALUs, fully pipelined

• One LD/ST unit, not pipelined

• ADDs can execute on ALU0 or ALU1

• MULs can execute on ALU0 only

• LOADs and STOREs can execute on 

LD/ST unit only

ALU0 ALU1 LD/ST

X

X

ALU0 ALU1 LD/ST

X

LOAD STORE

CS323, IIT Dharwad



31CS323, IIT Dharwad



32



✓

✓ ✓

✓ ✓



CS323, IIT Dharwad


	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Recall CSE
	Slide 3: Register Allocation
	Slide 4: Register Allocation
	Slide 5: Global vs. Local
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Liveness Example
	Slide 11: Bottom-up register allocation - Example
	Slide 13: Instruction Scheduling
	Slide 14: Instruction Scheduling
	Slide 15: Why do Instruction Scheduling?
	Slide 16: Why do Instruction Scheduling? Contd..
	Slide 17: Instruction Scheduling - Considerations
	Slide 18: Data dependence constraints
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Example
	Slide 25
	Slide 26
	Slide 27: Example
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: List scheduling - Example
	Slide 36
	Slide 37
	Slide 38: Computing heights
	Slide 39
	Slide 40: Instruction Scheduling - Exercise
	Slide 41: Basic Blocks and Flow Graphs
	Slide 42: Basic Blocks and Flow Graphs - Example
	Slide 43: Flow Graphs
	Slide 44: Flow Graphs - Representation
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Control Flow Graphs - Use
	Slide 87: Identify Loops in CFGs
	Slide 88
	Slide 89
	Slide 90: Identify Loops in CFGs
	Slide 91: Identify Loops in CFGs
	Slide 92: Identify Loops in CFGs

