Dependence Analysis

Motivating question

® Can the loops on the right
be run in parallel?

® j.e., can different ; . L. .
processors run or (1 =1; 1 <N; 1++) 1

different iterations in a[?] - [ﬂ;
parallel? clil =al1 - 11;
}
® What needs to be true for
a loop to be parallelizable!? for (1 1; 1 < N; 1++) {
o | . ali] = b[1];
terations cannot C['L] Cl['l.] + ['L _ 1];
interfere with each 1

other

® No dependence
between iterations

Dependences

® A flow dependence occurs when one iteration writes a
location that a later iteration reads

for (1 =1; 1 < N; 1++) {

ali] = b[1];
c[i] = a[1 - 1];
¥
1 =1 1 =2 1 =3 1 =4 1 =5
WCal[1]) WCal[2]) WCa[51)
RCb[1]) RCb[2]) RCb[31) RCb[4]) RCb[5]1)
W(Cc[1]) W(Cc[2]) W(Cc[31) W(Cc[4]1) W(Cc[51)
RCal@]) RCa[1l) RCal2])

Running a loop in parallel

® |[f there is a dependence in a loop, we cannot guarantee that
the loop will run correctly in parallel

® What if the iterations run out of order?

® Might read from a location before the correct value
was written to it

® What if the iterations do not run in lock-step?

® Same problem!

Other kinds of dependence

® Anti dependence —When an iteration reads a location that a
later iteration writes (why is this a problem?)

for (1 =1; 1 < N; 1++) {
alt - 1] = b[1l;
c[i] = a[1];

3

® (Output dependence —When an iteration writes a location
that a later iteration writes (why is this a problem?)

for (i =1; 1 < N; i++) {
a[i] = b[1i];
alt + 1] = c[1];

}

Data dependence concepts

® Dependence source is the earlier statement (the statement
at the tail of the dependence arrow)

® Dependence sink is the later statement (the statement at
the head of the dependence arrow)

1

W(a
R(b
W(c
R(Ca

=1

(11D
)

1]
1]
11D
21

1

W(a

\W(c
R(Ca

R(b

R(b[3]
W(Cc[3]
R(a

® Dependences can only go forward in time: always from an

A\

earlier iteration to a later iteration.

1 =4 1
(b[41) Rcbﬁ
(c[41) W(c[

A P

Using dependences

® |[f there are no dependences, we can parallelize a loop
® None of the iterations interfere with each other

® Can also use dependence information to drive other
optimizations

® |oop interchange
® | oop fusion
® (We will discuss these later)
® Two questions:
® How do we represent dependences in loops!?

® How do we determine if there are dependences!?

Representing dependences

® Focus on flow dependences for now
® Dependences in straight line code are easy to represent:

® One statement writes a location (variable, array location,
etc.) and another reads that same location

® Can figure this out using reaching definitions
® What do we do about loops!?

® We often care about dependences between the same
statement in different iterations of the loop!

for (i =1; 1 < N; i++) {
a[t + 1] = a[1] + 2
}

Iteration space graphs

Represent each dynamic instance of a loop as a point in a
graph

Draw arrows from one point to another to represent
dependences
for (i = 0; i < N; i++) {
ali + 2] = a[1]
¥

Iteration space graphs

® Represent each dynamic instance of a loop as a pointin a
graph

® Draw arrows from one point to another to represent
dependences

for (i =0; 1 < N; i++) {
alt + 2] = a[1]
}

® Step |:Create nodes, | for each iteration

® Note:not | for each array location!

O O 0 0 O O

Iteration space graphs

Represent each dynamic instance of a loop as a point in a
graph

Draw arrows from one point to another to represent
dependences
for (i = 0; i < N; i++) {
ali + 2] = a[1]
¥

Step 2: Determine which array elements are read and
written in each iteration

© O 0 0 O O

R: a[@] R: a[1] R: a[2] R: a[3] R: a[4] R: a[5]
W: a[2] W: a[3] W: a[4] W: a[5] W: al[6] W: a[7]

Iteration space graphs

Represent each dynamic instance of a loop as a point in a
graph

Draw arrows from one point to another to represent
dependences

for (i =0; 1 < N; i++) {
alt + 2] = a[1]
}

Step 3: Draw arrows to represent dependences

OOOIOIROEN0

R: a[@] R: a[1] R: a[2] R: a[3] R: a[4] R: a[5]
W: a[2] W: a[3] W: a[4] W: a[5] W: al[6] W: a[7]

2-D iteration space graphs

® Can do the same thing
for doubly-nested loops
® 2 loop counters
for (1 = 0; i < N; i++)
for (3 =0; J < N; J++)
ali+1][J-2] = a[1][]] + 1

j —

Iteration space graphs

® C(Can also represent output and anti dependences

® Use different kinds of arrows for clarity. E.g.
e —O— for output
¢ —t— for anti

® Crucial problem: Iteration space graphs are potentially
infinite representations!

® Can we represent dependences in a more compact way!?

Distance and direction vectors

® Compiler researchers have devised compressed
representations of dependences

® (Capture the same dependences as an iteration space
graph

® May lose precision (show more dependences than the
loop actually has)

® Two types

® Distance vectors: captures the “shape” of dependences,
but not the particular source and sink

® Direction vectors: captures the “direction” of
dependences, but not the particular shape

Distance vector

® Represent each dependence arrow in an iteration space
graph as a vector

e Captures the “shape” of the dependence, but loses where
the dependence originates

OO OIOIROEN0

R: a[0] R: a[1] R: a[2] R: a[3] R: a[4] R: a[5]
W: a[2] W: a[3] W: a[4] W: a[5] W: a[o6] W: al[7]

® Distance vector for this iteration space: (2)

® Each dependence is 2 iterations forward

2-D distance vectors

® Distance vector for this

graph: @ @
* (I,-2)

e +| in the i direction, -2
in the j direction T

® Crucial point about
distance vectors: they are |
always “positive”

=

®
®
®

® First non-zero entry
has to be positive

®
®
19

® Dependences can’t go
backwards in time

®
®

More complex example

® Can have multiple
distance vectors

for (1 =0; 1 < N; 1++)

for (J = 0; 7 < N; J++)
al1+1]1[3-2] = a[1][3] +
al1-1]1[3-2]

® 6 6 6
O 6 6
® 6 O
® 6 ©

More complex example

® Can have multiple
distance vectors

for (1 =0; 1 < N; 1++)

for (J = 0; 7 < N; J++)
al1+1]1[3-2] = a[1][3] +
al1-1]1[3-2]

® Distance vectors
o (1,-2)
¢ (2,0)

® Important point: order of
vectors depends on order
of loops, not use in arrays

R
S\

QEE

QD

Problems with distance vectors

® The preceding examples show how distance vectors can
summarize all the dependences in a loop nest using just a
small number of distance vectors

e (Can’t always summarize as easily

® Running example:

for (1 =0; 1 < N; 1++)
a[2*1] = a[il];

© O O o0 00

Write: a[0] al2] af4] a[6] a[8] a[10] a[12]
Read: al0] al1] al2] a[3] al4] a[5] a[6]

Loss of precision

® What are the distance vectors for this code?

* (1).@2),03)#) ..

® Note: we have information about the length of each vector,
but not about the source of each vector

® What happens if we try to reconstruct the iteration
space graph!?

© O O o0 00

Write: a[0] al2] af4] a[6] a[8] a[10] a[12]
Read: al0] al1] al2] a[3] al4] a[5] a[6]

Loss of precision

® What are the distance vectors for this code?

* (1).@2),03)#) ..

® Note: we have information about the length of each vector,
but not about the source of each vector

® What happens if we try to reconstruct the iteration
space graph!?

Write: a[0] al2] af4] a[6] a[8] a[10] a[12]
Read: al0] al1] al2] a[3] al4] a[5] a[6]

Direction vectors

® The whole point of distance vectors is that we want to be able to
succinctly capture the dependences in a loop nest

e But in the previous example, not only did we add a lot of extra
information, we still had an infinite number of distance vectors

® |dea: summarize distance vectors, and save only the direction the
dependence was in

¢ Q2-1) = ()
* (0.1)— (0,+)
¢ (0,-2) ~ (0,-)

® (can’t happen; dependences have to be positive)

® Notation: sometimes use ‘<‘ and >’ instead of ‘+’ and

Why use direction vectors!?

® Direction vectors lose a lot of information, but do capture
some useful information

® Whether there is a dependence (anything other than a
‘0’ means there is a dependence)

® Which dimension and direction the dependence is in

® Many times, the only information we need to determine if
an optimization is legal is captured by direction vectors

® Loop parallelization

® Loop interchange

Loop parallelization

Loop-carried dependence

® The key concept for parallelization is the loop carried
dependence

® A dependence that crosses loop iterations

® |[f there is a loop carried dependence, then that loop cannot
be parallelized

® Some iterations of the loop depend on other iterations
of the same loop

Examples

for (1
al[2*1

;1 < N; 1++)

ali];

e |
I

for (i =0; 1 < N; i++)
for (3 = 0; 7 < N; J++)
al[1+1][3-2] = a[1][3] + 1

Later iterations of i loop
depend on earlier iterations

Later iterations of both i and

j loops depend on earlier iterations

Some subtleties

® Dependences might only (o2
be carried over one loop!

(19
OO

for (1 =0; 1 < N; 1++)
(12

for (j = @; j < N; j++ (02)

alil[j+1] = a[il[§] + 1 ‘
O

® Can parallelize i loop, but

not j loop

O—0O—

O—O—E—0O—C
O—O—E—O—C
O—O—E—O—C

Some subtleties

® Dependences might only
be carried over one loop!

i

for (1 =0; 1 < N; 1++)
for (J = 0; 7 < N; J++)
al1i+1]1[3] = a[1-1]1[3] + 1

® Can parallelize j loop, but
not i loop

Direction vectors

® So how do direction vectors help!?

® |[f there is a non-zero entry for a loop dimension, that
means that there is a loop carried dependence over that

dimension

® |[f an entry is zero, then that loop can be parallelized!

® May be able to parallelize inner loop even if entry is not
zero, but you have to carefully structure parallel execution

Other loop
optimizations

Loop interchange

® We've seen this one before

® Interchange doubly-nested loop to
® |mprove locality
® |mprove parallelism

® Move parallel loop to outer loop (coarse grained
parallelism)

Loop interchange legality

® We noted that loop interchange is not always legal, because
it reorders a computation

® Can we use dependences to determine legality?

Loop interchange dependences

® Consider interchanging
the following loop, with
the dependence graph to
the right:

for (1 =0; 1 < N; 1++)
for (J =0; 3 < N; J++)
a[i+1][j+2] = a[1][]] + 1
® Distance vector (I, 2)

® Direction vector (+, +)

e

—

S

9{

19

Loop interchange dependences

® Consider interchanging
the following loop, with
the dependence graph to
the right:

for (3 = 0; j < N; j++
for (1 =0; 1 < N; 1++)
a[i+1][j+2] = a[1][]] + 1
® Distance vector (2, |)

® Direction vector (+, +)

® Distance vector gets
swapped!

e

R

|

®

1

Loop interchange legality

® |[nterchanging two loops swaps the order of their entries in
distance/direction vectors

* (0,+) = (+0)
* (+0)—(0+)

® But remember, we can’t have backwards dependences
* ()2 (=)

® |llegal dependence — Loop interchange not legal!

Loop interchange dependences

® Example of illegal
interchange:

OBNOBNOENOD
for (1 =0; 1 < N; 1++)

for (3 = 0; 3 < N; J++) (53
al[1+1]1[3-2] = a[1][3] + 1 T

j

O\W\®\®
® W ®

| ——

=
-

Loop interchange dependences

® Example of illegal
interchange:

for (J = 0; 7 < N; J++)

for (1 = 0; 1 < N; 1++)

® Flow dependences turned
into anti-dependences

a[i+11[j-2] = a[i][j] + 1
T O
G

® Result of computation
will change!

Loop fusion/distribution

® Loop fusion: combining two loops into a single loop
® Improves locality, parallelism
® | oop distribution: splitting a single loop into two loops

® Can increase parallelism (turn a non-parallelizable loop
into a parallelizable loop)

® |egal as long as optimization maintains dependences

® Every dependence in the original loop should have a
dependence in the optimized loop

® Optimized loop should not introduce new dependences

Fusion/distribution example

® Code I: ® Code 2:
for (1 = 0; 1 < N; i++)
a[it - 1] = b[1] for (1 =0; 1 < N; 1++)
a[t - 1] = b[1]
for (J = 0; 3 < N; J++) c[i] = a[1]
c[i] = al1]
Dependence graph ® Dependence graph
° AII red iterations f‘msh ® jiterations finish before i+
before blue iterations — iterations — flow dependence

flow dependence now an anti dependence!

Fusion/distribution utility

for (1 =0; 1 < N; 1++) Fusion

alil = a[i - 1] » for (i = 0; 1 < N; i++)
al[i] = a[i - 1]
for (3 = 0; 7 < N; J++) Qistribution b[1] = a[1]

b[j] = al3j]

® Fusion and distribution both legal

® Right code has better locality, but cannot be parallelized
due to loop carried dependences

® |eft code has worse locality, but blue loop can be
parallelized

