
Passing data objects from lexer to
parser (using Flex and Bison)

Nikhil Hegde, Department of CSE, IIT Dharwad

Nikhil Hegde, IIT Dharwad 1

• Goal: recognize an INTLITERAL and STRINGLITERAL
in the program text, print the line number and the
value of the INTLITERAL and STRINGLITERAL as a
semantic action in the parser.

Nikhil Hegde, IIT Dharwad 2

scanner.l file

Nikhil Hegde, IIT Dharwad 3

type of the field is std::pair<int, int>

type of the field is std::pair<std::string, int>

A global variable to keep track of
line numbers

intliteraldata is the name (of ‘field’) in the data object’s fields defined

yylval is the name of the data object passed from lexer to parser. yylval is
the variable name. This variable is of type YYSTYPE, which is defined as a union
in parser.

increment counter tracking line number when ‘newline’ symbol is seen in input file

microParser.ypp file

Nikhil Hegde, IIT Dharwad
4

iostream is needed for std::pair
Whatever you put in between %{ and %} is copied to microParser.tab.cpp file but not
microParser.tab.hpp file.

This is the type of the data object passed from lexer to scanner. This object is a union and
has fields intliteraldata and stringliteraldata. This union can contain only basic
data types such as int, float, char, and pointers.

As the details of this type is required by the scanner and as this type contains
std::string and std::pair, scanner.l needs to include corresponding
headers. This inclusion must be done before #include”microParser.tab.hpp”
because the .hpp file does not include these headers as mentioned above. Also
note that all the fields inside %union are pointers types.

Note two ways of associating fields of the data object with tokens: 1) %token
<intliteral> INTLITERAL. In this case you don’t have to separately define %token
INTLITERAL 2) %token STRINGLITERAL followed by %type<stringliteraldata>
STRINGLITERAL. In this case, we mean explicitly the type of stringliteral is the type
of the semantic record of STRINGLITERAL token.

• ($1) is the reference to data object of STRINGLITERAL. Whenever the category of the token matched in scanner is a
STRINGLITERAL, the scanner creates an object of type as that of stringliteraldata, initializes it with appropriate values and
sends it to parser. The return statement in scanner only returns the token category. The token value is set by the scanner
using yylval object. The parser refers to this object using $1 in this case in the semantic action using ($1).

• c_str() is needed to convert std::string to C-style strings (char *). If you use cout to print you don’t need this.
• first and second are the names by which you access the fields of a std::pair object
• delete the object created if no longer required.

	Slide 1: Passing data objects from lexer to parser (using Flex and Bison)
	Slide 2
	Slide 3: scanner.l file
	Slide 4: microParser.ypp file

